Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+12x+9=-9\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=-9\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+12x+9=-9x^{2}+18x-9
Use the distributive property to multiply -9 by x^{2}-2x+1.
4x^{2}+12x+9+9x^{2}=18x-9
Add 9x^{2} to both sides.
13x^{2}+12x+9=18x-9
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
13x^{2}+12x+9-18x=-9
Subtract 18x from both sides.
13x^{2}-6x+9=-9
Combine 12x and -18x to get -6x.
13x^{2}-6x+9+9=0
Add 9 to both sides.
13x^{2}-6x+18=0
Add 9 and 9 to get 18.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 13\times 18}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -6 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 13\times 18}}{2\times 13}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-52\times 18}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-6\right)±\sqrt{36-936}}{2\times 13}
Multiply -52 times 18.
x=\frac{-\left(-6\right)±\sqrt{-900}}{2\times 13}
Add 36 to -936.
x=\frac{-\left(-6\right)±30i}{2\times 13}
Take the square root of -900.
x=\frac{6±30i}{2\times 13}
The opposite of -6 is 6.
x=\frac{6±30i}{26}
Multiply 2 times 13.
x=\frac{6+30i}{26}
Now solve the equation x=\frac{6±30i}{26} when ± is plus. Add 6 to 30i.
x=\frac{3}{13}+\frac{15}{13}i
Divide 6+30i by 26.
x=\frac{6-30i}{26}
Now solve the equation x=\frac{6±30i}{26} when ± is minus. Subtract 30i from 6.
x=\frac{3}{13}-\frac{15}{13}i
Divide 6-30i by 26.
x=\frac{3}{13}+\frac{15}{13}i x=\frac{3}{13}-\frac{15}{13}i
The equation is now solved.
4x^{2}+12x+9=-9\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=-9\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+12x+9=-9x^{2}+18x-9
Use the distributive property to multiply -9 by x^{2}-2x+1.
4x^{2}+12x+9+9x^{2}=18x-9
Add 9x^{2} to both sides.
13x^{2}+12x+9=18x-9
Combine 4x^{2} and 9x^{2} to get 13x^{2}.
13x^{2}+12x+9-18x=-9
Subtract 18x from both sides.
13x^{2}-6x+9=-9
Combine 12x and -18x to get -6x.
13x^{2}-6x=-9-9
Subtract 9 from both sides.
13x^{2}-6x=-18
Subtract 9 from -9 to get -18.
\frac{13x^{2}-6x}{13}=-\frac{18}{13}
Divide both sides by 13.
x^{2}-\frac{6}{13}x=-\frac{18}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{6}{13}x+\left(-\frac{3}{13}\right)^{2}=-\frac{18}{13}+\left(-\frac{3}{13}\right)^{2}
Divide -\frac{6}{13}, the coefficient of the x term, by 2 to get -\frac{3}{13}. Then add the square of -\frac{3}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{13}x+\frac{9}{169}=-\frac{18}{13}+\frac{9}{169}
Square -\frac{3}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{13}x+\frac{9}{169}=-\frac{225}{169}
Add -\frac{18}{13} to \frac{9}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{13}\right)^{2}=-\frac{225}{169}
Factor x^{2}-\frac{6}{13}x+\frac{9}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{13}\right)^{2}}=\sqrt{-\frac{225}{169}}
Take the square root of both sides of the equation.
x-\frac{3}{13}=\frac{15}{13}i x-\frac{3}{13}=-\frac{15}{13}i
Simplify.
x=\frac{3}{13}+\frac{15}{13}i x=\frac{3}{13}-\frac{15}{13}i
Add \frac{3}{13} to both sides of the equation.