Solve for x
x=-3
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
4x^{2}+12x+9+5\left(2x+3\right)+6=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9+10x+15+6=0
Use the distributive property to multiply 5 by 2x+3.
4x^{2}+22x+9+15+6=0
Combine 12x and 10x to get 22x.
4x^{2}+22x+24+6=0
Add 9 and 15 to get 24.
4x^{2}+22x+30=0
Add 24 and 6 to get 30.
2x^{2}+11x+15=0
Divide both sides by 2.
a+b=11 ab=2\times 15=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,30 2,15 3,10 5,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 30.
1+30=31 2+15=17 3+10=13 5+6=11
Calculate the sum for each pair.
a=5 b=6
The solution is the pair that gives sum 11.
\left(2x^{2}+5x\right)+\left(6x+15\right)
Rewrite 2x^{2}+11x+15 as \left(2x^{2}+5x\right)+\left(6x+15\right).
x\left(2x+5\right)+3\left(2x+5\right)
Factor out x in the first and 3 in the second group.
\left(2x+5\right)\left(x+3\right)
Factor out common term 2x+5 by using distributive property.
x=-\frac{5}{2} x=-3
To find equation solutions, solve 2x+5=0 and x+3=0.
4x^{2}+12x+9+5\left(2x+3\right)+6=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9+10x+15+6=0
Use the distributive property to multiply 5 by 2x+3.
4x^{2}+22x+9+15+6=0
Combine 12x and 10x to get 22x.
4x^{2}+22x+24+6=0
Add 9 and 15 to get 24.
4x^{2}+22x+30=0
Add 24 and 6 to get 30.
x=\frac{-22±\sqrt{22^{2}-4\times 4\times 30}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 22 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 4\times 30}}{2\times 4}
Square 22.
x=\frac{-22±\sqrt{484-16\times 30}}{2\times 4}
Multiply -4 times 4.
x=\frac{-22±\sqrt{484-480}}{2\times 4}
Multiply -16 times 30.
x=\frac{-22±\sqrt{4}}{2\times 4}
Add 484 to -480.
x=\frac{-22±2}{2\times 4}
Take the square root of 4.
x=\frac{-22±2}{8}
Multiply 2 times 4.
x=-\frac{20}{8}
Now solve the equation x=\frac{-22±2}{8} when ± is plus. Add -22 to 2.
x=-\frac{5}{2}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{24}{8}
Now solve the equation x=\frac{-22±2}{8} when ± is minus. Subtract 2 from -22.
x=-3
Divide -24 by 8.
x=-\frac{5}{2} x=-3
The equation is now solved.
4x^{2}+12x+9+5\left(2x+3\right)+6=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9+10x+15+6=0
Use the distributive property to multiply 5 by 2x+3.
4x^{2}+22x+9+15+6=0
Combine 12x and 10x to get 22x.
4x^{2}+22x+24+6=0
Add 9 and 15 to get 24.
4x^{2}+22x+30=0
Add 24 and 6 to get 30.
4x^{2}+22x=-30
Subtract 30 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}+22x}{4}=-\frac{30}{4}
Divide both sides by 4.
x^{2}+\frac{22}{4}x=-\frac{30}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{11}{2}x=-\frac{30}{4}
Reduce the fraction \frac{22}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{11}{2}x=-\frac{15}{2}
Reduce the fraction \frac{-30}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-\frac{15}{2}+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-\frac{15}{2}+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{1}{16}
Add -\frac{15}{2} to \frac{121}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{1}{4} x+\frac{11}{4}=-\frac{1}{4}
Simplify.
x=-\frac{5}{2} x=-3
Subtract \frac{11}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}