Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x+9-\left(2x-1\right)\left(2x+1\right)=46
Calculate 3 to the power of 2 and get 9.
2x+9-\left(\left(2x\right)^{2}-1\right)=46
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x+9-\left(2^{2}x^{2}-1\right)=46
Expand \left(2x\right)^{2}.
2x+9-\left(4x^{2}-1\right)=46
Calculate 2 to the power of 2 and get 4.
2x+9-4x^{2}+1=46
To find the opposite of 4x^{2}-1, find the opposite of each term.
2x+10-4x^{2}=46
Add 9 and 1 to get 10.
2x+10-4x^{2}-46=0
Subtract 46 from both sides.
2x-36-4x^{2}=0
Subtract 46 from 10 to get -36.
-4x^{2}+2x-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\left(-36\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\left(-36\right)}}{2\left(-4\right)}
Square 2.
x=\frac{-2±\sqrt{4+16\left(-36\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2±\sqrt{4-576}}{2\left(-4\right)}
Multiply 16 times -36.
x=\frac{-2±\sqrt{-572}}{2\left(-4\right)}
Add 4 to -576.
x=\frac{-2±2\sqrt{143}i}{2\left(-4\right)}
Take the square root of -572.
x=\frac{-2±2\sqrt{143}i}{-8}
Multiply 2 times -4.
x=\frac{-2+2\sqrt{143}i}{-8}
Now solve the equation x=\frac{-2±2\sqrt{143}i}{-8} when ± is plus. Add -2 to 2i\sqrt{143}.
x=\frac{-\sqrt{143}i+1}{4}
Divide -2+2i\sqrt{143} by -8.
x=\frac{-2\sqrt{143}i-2}{-8}
Now solve the equation x=\frac{-2±2\sqrt{143}i}{-8} when ± is minus. Subtract 2i\sqrt{143} from -2.
x=\frac{1+\sqrt{143}i}{4}
Divide -2-2i\sqrt{143} by -8.
x=\frac{-\sqrt{143}i+1}{4} x=\frac{1+\sqrt{143}i}{4}
The equation is now solved.
2x+9-\left(2x-1\right)\left(2x+1\right)=46
Calculate 3 to the power of 2 and get 9.
2x+9-\left(\left(2x\right)^{2}-1\right)=46
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x+9-\left(2^{2}x^{2}-1\right)=46
Expand \left(2x\right)^{2}.
2x+9-\left(4x^{2}-1\right)=46
Calculate 2 to the power of 2 and get 4.
2x+9-4x^{2}+1=46
To find the opposite of 4x^{2}-1, find the opposite of each term.
2x+10-4x^{2}=46
Add 9 and 1 to get 10.
2x-4x^{2}=46-10
Subtract 10 from both sides.
2x-4x^{2}=36
Subtract 10 from 46 to get 36.
-4x^{2}+2x=36
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+2x}{-4}=\frac{36}{-4}
Divide both sides by -4.
x^{2}+\frac{2}{-4}x=\frac{36}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{2}x=\frac{36}{-4}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x=-9
Divide 36 by -4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-9+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-9+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{143}{16}
Add -9 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=-\frac{143}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{143}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{143}i}{4} x-\frac{1}{4}=-\frac{\sqrt{143}i}{4}
Simplify.
x=\frac{1+\sqrt{143}i}{4} x=\frac{-\sqrt{143}i+1}{4}
Add \frac{1}{4} to both sides of the equation.