( 2 x + 2 + \frac { 3 x - 1 } { 5 } < \frac { 10 x + 1 } { 2 } )
Solve for x
x>\frac{13}{24}
Graph
Share
Copied to clipboard
20x+20+2\left(3x-1\right)<5\left(10x+1\right)
Multiply both sides of the equation by 10, the least common multiple of 5,2. Since 10 is positive, the inequality direction remains the same.
20x+20+6x-2<5\left(10x+1\right)
Use the distributive property to multiply 2 by 3x-1.
26x+20-2<5\left(10x+1\right)
Combine 20x and 6x to get 26x.
26x+18<5\left(10x+1\right)
Subtract 2 from 20 to get 18.
26x+18<50x+5
Use the distributive property to multiply 5 by 10x+1.
26x+18-50x<5
Subtract 50x from both sides.
-24x+18<5
Combine 26x and -50x to get -24x.
-24x<5-18
Subtract 18 from both sides.
-24x<-13
Subtract 18 from 5 to get -13.
x>\frac{-13}{-24}
Divide both sides by -24. Since -24 is negative, the inequality direction is changed.
x>\frac{13}{24}
Fraction \frac{-13}{-24} can be simplified to \frac{13}{24} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}