Evaluate
96x+528
Expand
96x+528
Graph
Share
Copied to clipboard
\frac{\left(2x+11\right)\times 48}{x-5}\left(x-5\right)
Express \left(2x+11\right)\times \frac{48}{x-5} as a single fraction.
\frac{\left(2x+11\right)\times 48}{x-5}x-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Use the distributive property to multiply \frac{\left(2x+11\right)\times 48}{x-5} by x-5.
\frac{96x+528}{x-5}x-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Use the distributive property to multiply 2x+11 by 48.
\frac{\left(96x+528\right)x}{x-5}-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Express \frac{96x+528}{x-5}x as a single fraction.
\frac{\left(96x+528\right)x}{x-5}-5\times \frac{96x+528}{x-5}
Use the distributive property to multiply 2x+11 by 48.
\frac{\left(96x+528\right)x}{x-5}+\frac{-5\left(96x+528\right)}{x-5}
Express -5\times \frac{96x+528}{x-5} as a single fraction.
\frac{\left(96x+528\right)x-5\left(96x+528\right)}{x-5}
Since \frac{\left(96x+528\right)x}{x-5} and \frac{-5\left(96x+528\right)}{x-5} have the same denominator, add them by adding their numerators.
\frac{96x^{2}+528x-480x-2640}{x-5}
Do the multiplications in \left(96x+528\right)x-5\left(96x+528\right).
\frac{96x^{2}+48x-2640}{x-5}
Combine like terms in 96x^{2}+528x-480x-2640.
\frac{48\left(x-5\right)\left(2x+11\right)}{x-5}
Factor the expressions that are not already factored in \frac{96x^{2}+48x-2640}{x-5}.
48\left(2x+11\right)
Cancel out x-5 in both numerator and denominator.
96x+528
Expand the expression.
\frac{\left(2x+11\right)\times 48}{x-5}\left(x-5\right)
Express \left(2x+11\right)\times \frac{48}{x-5} as a single fraction.
\frac{\left(2x+11\right)\times 48}{x-5}x-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Use the distributive property to multiply \frac{\left(2x+11\right)\times 48}{x-5} by x-5.
\frac{96x+528}{x-5}x-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Use the distributive property to multiply 2x+11 by 48.
\frac{\left(96x+528\right)x}{x-5}-5\times \frac{\left(2x+11\right)\times 48}{x-5}
Express \frac{96x+528}{x-5}x as a single fraction.
\frac{\left(96x+528\right)x}{x-5}-5\times \frac{96x+528}{x-5}
Use the distributive property to multiply 2x+11 by 48.
\frac{\left(96x+528\right)x}{x-5}+\frac{-5\left(96x+528\right)}{x-5}
Express -5\times \frac{96x+528}{x-5} as a single fraction.
\frac{\left(96x+528\right)x-5\left(96x+528\right)}{x-5}
Since \frac{\left(96x+528\right)x}{x-5} and \frac{-5\left(96x+528\right)}{x-5} have the same denominator, add them by adding their numerators.
\frac{96x^{2}+528x-480x-2640}{x-5}
Do the multiplications in \left(96x+528\right)x-5\left(96x+528\right).
\frac{96x^{2}+48x-2640}{x-5}
Combine like terms in 96x^{2}+528x-480x-2640.
\frac{48\left(x-5\right)\left(2x+11\right)}{x-5}
Factor the expressions that are not already factored in \frac{96x^{2}+48x-2640}{x-5}.
48\left(2x+11\right)
Cancel out x-5 in both numerator and denominator.
96x+528
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}