Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+7x+3-9=\left(3x-2\right)\left(x+2\right)
Use the distributive property to multiply 2x+1 by x+3 and combine like terms.
2x^{2}+7x-6=\left(3x-2\right)\left(x+2\right)
Subtract 9 from 3 to get -6.
2x^{2}+7x-6=3x^{2}+4x-4
Use the distributive property to multiply 3x-2 by x+2 and combine like terms.
2x^{2}+7x-6-3x^{2}=4x-4
Subtract 3x^{2} from both sides.
-x^{2}+7x-6=4x-4
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+7x-6-4x=-4
Subtract 4x from both sides.
-x^{2}+3x-6=-4
Combine 7x and -4x to get 3x.
-x^{2}+3x-6+4=0
Add 4 to both sides.
-x^{2}+3x-2=0
Add -6 and 4 to get -2.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-2\right)}}{2\left(-1\right)}
Square 3.
x=\frac{-3±\sqrt{9+4\left(-2\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-3±\sqrt{9-8}}{2\left(-1\right)}
Multiply 4 times -2.
x=\frac{-3±\sqrt{1}}{2\left(-1\right)}
Add 9 to -8.
x=\frac{-3±1}{2\left(-1\right)}
Take the square root of 1.
x=\frac{-3±1}{-2}
Multiply 2 times -1.
x=-\frac{2}{-2}
Now solve the equation x=\frac{-3±1}{-2} when ± is plus. Add -3 to 1.
x=1
Divide -2 by -2.
x=-\frac{4}{-2}
Now solve the equation x=\frac{-3±1}{-2} when ± is minus. Subtract 1 from -3.
x=2
Divide -4 by -2.
x=1 x=2
The equation is now solved.
2x^{2}+7x+3-9=\left(3x-2\right)\left(x+2\right)
Use the distributive property to multiply 2x+1 by x+3 and combine like terms.
2x^{2}+7x-6=\left(3x-2\right)\left(x+2\right)
Subtract 9 from 3 to get -6.
2x^{2}+7x-6=3x^{2}+4x-4
Use the distributive property to multiply 3x-2 by x+2 and combine like terms.
2x^{2}+7x-6-3x^{2}=4x-4
Subtract 3x^{2} from both sides.
-x^{2}+7x-6=4x-4
Combine 2x^{2} and -3x^{2} to get -x^{2}.
-x^{2}+7x-6-4x=-4
Subtract 4x from both sides.
-x^{2}+3x-6=-4
Combine 7x and -4x to get 3x.
-x^{2}+3x=-4+6
Add 6 to both sides.
-x^{2}+3x=2
Add -4 and 6 to get 2.
\frac{-x^{2}+3x}{-1}=\frac{2}{-1}
Divide both sides by -1.
x^{2}+\frac{3}{-1}x=\frac{2}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-3x=\frac{2}{-1}
Divide 3 by -1.
x^{2}-3x=-2
Divide 2 by -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.