Solve for m
m=-\frac{9x^{2}+2x-25}{2x+1}
x\neq -\frac{1}{2}
Solve for x
x=\frac{\sqrt{m^{2}-7m+226}-m-1}{9}
x=\frac{-\sqrt{m^{2}-7m+226}-m-1}{9}
Graph
Share
Copied to clipboard
18x^{2}+4mx+9x+2m-5\left(x+2\right)=40
Use the distributive property to multiply 2x+1 by 9x+2m.
18x^{2}+4mx+9x+2m-5x-10=40
Use the distributive property to multiply -5 by x+2.
18x^{2}+4mx+4x+2m-10=40
Combine 9x and -5x to get 4x.
4mx+4x+2m-10=40-18x^{2}
Subtract 18x^{2} from both sides.
4mx+2m-10=40-18x^{2}-4x
Subtract 4x from both sides.
4mx+2m=40-18x^{2}-4x+10
Add 10 to both sides.
4mx+2m=50-18x^{2}-4x
Add 40 and 10 to get 50.
\left(4x+2\right)m=50-18x^{2}-4x
Combine all terms containing m.
\left(4x+2\right)m=50-4x-18x^{2}
The equation is in standard form.
\frac{\left(4x+2\right)m}{4x+2}=\frac{50-4x-18x^{2}}{4x+2}
Divide both sides by 4x+2.
m=\frac{50-4x-18x^{2}}{4x+2}
Dividing by 4x+2 undoes the multiplication by 4x+2.
m=\frac{25-2x-9x^{2}}{2x+1}
Divide 50-18x^{2}-4x by 4x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}