Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1-3=13
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x-2=13
Subtract 3 from 1 to get -2.
4x^{2}+4x-2-13=0
Subtract 13 from both sides.
4x^{2}+4x-15=0
Subtract 13 from -2 to get -15.
a+b=4 ab=4\left(-15\right)=-60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=-6 b=10
The solution is the pair that gives sum 4.
\left(4x^{2}-6x\right)+\left(10x-15\right)
Rewrite 4x^{2}+4x-15 as \left(4x^{2}-6x\right)+\left(10x-15\right).
2x\left(2x-3\right)+5\left(2x-3\right)
Factor out 2x in the first and 5 in the second group.
\left(2x-3\right)\left(2x+5\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=-\frac{5}{2}
To find equation solutions, solve 2x-3=0 and 2x+5=0.
4x^{2}+4x+1-3=13
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x-2=13
Subtract 3 from 1 to get -2.
4x^{2}+4x-2-13=0
Subtract 13 from both sides.
4x^{2}+4x-15=0
Subtract 13 from -2 to get -15.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-15\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\left(-15\right)}}{2\times 4}
Square 4.
x=\frac{-4±\sqrt{16-16\left(-15\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-4±\sqrt{16+240}}{2\times 4}
Multiply -16 times -15.
x=\frac{-4±\sqrt{256}}{2\times 4}
Add 16 to 240.
x=\frac{-4±16}{2\times 4}
Take the square root of 256.
x=\frac{-4±16}{8}
Multiply 2 times 4.
x=\frac{12}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is plus. Add -4 to 16.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
x=-\frac{20}{8}
Now solve the equation x=\frac{-4±16}{8} when ± is minus. Subtract 16 from -4.
x=-\frac{5}{2}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=-\frac{5}{2}
The equation is now solved.
4x^{2}+4x+1-3=13
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x-2=13
Subtract 3 from 1 to get -2.
4x^{2}+4x=13+2
Add 2 to both sides.
4x^{2}+4x=15
Add 13 and 2 to get 15.
\frac{4x^{2}+4x}{4}=\frac{15}{4}
Divide both sides by 4.
x^{2}+\frac{4}{4}x=\frac{15}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+x=\frac{15}{4}
Divide 4 by 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{15}{4}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{15+1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=4
Add \frac{15}{4} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=4
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+\frac{1}{2}=2 x+\frac{1}{2}=-2
Simplify.
x=\frac{3}{2} x=-\frac{5}{2}
Subtract \frac{1}{2} from both sides of the equation.