Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-2x=1
Subtract 2x from both sides.
4x^{2}+2x+1=1
Combine 4x and -2x to get 2x.
4x^{2}+2x+1-1=0
Subtract 1 from both sides.
4x^{2}+2x=0
Subtract 1 from 1 to get 0.
x\left(4x+2\right)=0
Factor out x.
x=0 x=-\frac{1}{2}
To find equation solutions, solve x=0 and 4x+2=0.
4x^{2}+4x+1=2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-2x=1
Subtract 2x from both sides.
4x^{2}+2x+1=1
Combine 4x and -2x to get 2x.
4x^{2}+2x+1-1=0
Subtract 1 from both sides.
4x^{2}+2x=0
Subtract 1 from 1 to get 0.
x=\frac{-2±\sqrt{2^{2}}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\times 4}
Take the square root of 2^{2}.
x=\frac{-2±2}{8}
Multiply 2 times 4.
x=\frac{0}{8}
Now solve the equation x=\frac{-2±2}{8} when ± is plus. Add -2 to 2.
x=0
Divide 0 by 8.
x=-\frac{4}{8}
Now solve the equation x=\frac{-2±2}{8} when ± is minus. Subtract 2 from -2.
x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x=0 x=-\frac{1}{2}
The equation is now solved.
4x^{2}+4x+1=2x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-2x=1
Subtract 2x from both sides.
4x^{2}+2x+1=1
Combine 4x and -2x to get 2x.
4x^{2}+2x=1-1
Subtract 1 from both sides.
4x^{2}+2x=0
Subtract 1 from 1 to get 0.
\frac{4x^{2}+2x}{4}=\frac{0}{4}
Divide both sides by 4.
x^{2}+\frac{2}{4}x=\frac{0}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{1}{2}x=\frac{0}{4}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x=0
Divide 0 by 4.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Simplify.
x=0 x=-\frac{1}{2}
Subtract \frac{1}{4} from both sides of the equation.