Solve for x
x=-6
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
4x^{2}+4x+1=\left(x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+4x+1-x^{2}=-10x+25
Subtract x^{2} from both sides.
3x^{2}+4x+1=-10x+25
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+10x=25
Add 10x to both sides.
3x^{2}+14x+1=25
Combine 4x and 10x to get 14x.
3x^{2}+14x+1-25=0
Subtract 25 from both sides.
3x^{2}+14x-24=0
Subtract 25 from 1 to get -24.
a+b=14 ab=3\left(-24\right)=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-24. To find a and b, set up a system to be solved.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Calculate the sum for each pair.
a=-4 b=18
The solution is the pair that gives sum 14.
\left(3x^{2}-4x\right)+\left(18x-24\right)
Rewrite 3x^{2}+14x-24 as \left(3x^{2}-4x\right)+\left(18x-24\right).
x\left(3x-4\right)+6\left(3x-4\right)
Factor out x in the first and 6 in the second group.
\left(3x-4\right)\left(x+6\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=-6
To find equation solutions, solve 3x-4=0 and x+6=0.
4x^{2}+4x+1=\left(x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+4x+1-x^{2}=-10x+25
Subtract x^{2} from both sides.
3x^{2}+4x+1=-10x+25
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+10x=25
Add 10x to both sides.
3x^{2}+14x+1=25
Combine 4x and 10x to get 14x.
3x^{2}+14x+1-25=0
Subtract 25 from both sides.
3x^{2}+14x-24=0
Subtract 25 from 1 to get -24.
x=\frac{-14±\sqrt{14^{2}-4\times 3\left(-24\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 3\left(-24\right)}}{2\times 3}
Square 14.
x=\frac{-14±\sqrt{196-12\left(-24\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-14±\sqrt{196+288}}{2\times 3}
Multiply -12 times -24.
x=\frac{-14±\sqrt{484}}{2\times 3}
Add 196 to 288.
x=\frac{-14±22}{2\times 3}
Take the square root of 484.
x=\frac{-14±22}{6}
Multiply 2 times 3.
x=\frac{8}{6}
Now solve the equation x=\frac{-14±22}{6} when ± is plus. Add -14 to 22.
x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{6}
Now solve the equation x=\frac{-14±22}{6} when ± is minus. Subtract 22 from -14.
x=-6
Divide -36 by 6.
x=\frac{4}{3} x=-6
The equation is now solved.
4x^{2}+4x+1=\left(x-5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-10x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}+4x+1-x^{2}=-10x+25
Subtract x^{2} from both sides.
3x^{2}+4x+1=-10x+25
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+10x=25
Add 10x to both sides.
3x^{2}+14x+1=25
Combine 4x and 10x to get 14x.
3x^{2}+14x=25-1
Subtract 1 from both sides.
3x^{2}+14x=24
Subtract 1 from 25 to get 24.
\frac{3x^{2}+14x}{3}=\frac{24}{3}
Divide both sides by 3.
x^{2}+\frac{14}{3}x=\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{14}{3}x=8
Divide 24 by 3.
x^{2}+\frac{14}{3}x+\left(\frac{7}{3}\right)^{2}=8+\left(\frac{7}{3}\right)^{2}
Divide \frac{14}{3}, the coefficient of the x term, by 2 to get \frac{7}{3}. Then add the square of \frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{14}{3}x+\frac{49}{9}=8+\frac{49}{9}
Square \frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{121}{9}
Add 8 to \frac{49}{9}.
\left(x+\frac{7}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}+\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x+\frac{7}{3}=\frac{11}{3} x+\frac{7}{3}=-\frac{11}{3}
Simplify.
x=\frac{4}{3} x=-6
Subtract \frac{7}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}