Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+4x+1=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+4x+1-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+4x+1=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+2x=1
Add 2x to both sides.
3x^{2}+6x+1=1
Combine 4x and 2x to get 6x.
3x^{2}+6x+1-1=0
Subtract 1 from both sides.
3x^{2}+6x=0
Subtract 1 from 1 to get 0.
x\left(3x+6\right)=0
Factor out x.
x=0 x=-2
To find equation solutions, solve x=0 and 3x+6=0.
4x^{2}+4x+1=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+4x+1-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+4x+1=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+2x=1
Add 2x to both sides.
3x^{2}+6x+1=1
Combine 4x and 2x to get 6x.
3x^{2}+6x+1-1=0
Subtract 1 from both sides.
3x^{2}+6x=0
Subtract 1 from 1 to get 0.
x=\frac{-6±\sqrt{6^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 3}
Take the square root of 6^{2}.
x=\frac{-6±6}{6}
Multiply 2 times 3.
x=\frac{0}{6}
Now solve the equation x=\frac{-6±6}{6} when ± is plus. Add -6 to 6.
x=0
Divide 0 by 6.
x=-\frac{12}{6}
Now solve the equation x=\frac{-6±6}{6} when ± is minus. Subtract 6 from -6.
x=-2
Divide -12 by 6.
x=0 x=-2
The equation is now solved.
4x^{2}+4x+1=\left(x-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1=x^{2}-2x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}+4x+1-x^{2}=-2x+1
Subtract x^{2} from both sides.
3x^{2}+4x+1=-2x+1
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+4x+1+2x=1
Add 2x to both sides.
3x^{2}+6x+1=1
Combine 4x and 2x to get 6x.
3x^{2}+6x=1-1
Subtract 1 from both sides.
3x^{2}+6x=0
Subtract 1 from 1 to get 0.
\frac{3x^{2}+6x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\frac{6}{3}x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+2x=\frac{0}{3}
Divide 6 by 3.
x^{2}+2x=0
Divide 0 by 3.
x^{2}+2x+1^{2}=1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=1
Square 1.
\left(x+1\right)^{2}=1
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x+1=1 x+1=-1
Simplify.
x=0 x=-2
Subtract 1 from both sides of the equation.