Evaluate
\frac{128s^{28}}{t^{\frac{7}{4}}}
Expand
\frac{128s^{28}}{t^{\frac{7}{4}}}
Share
Copied to clipboard
2^{7}\left(s^{4}\right)^{7}\left(t^{-\frac{1}{4}}\right)^{7}
Expand \left(2s^{4}t^{-\frac{1}{4}}\right)^{7}.
2^{7}s^{28}\left(t^{-\frac{1}{4}}\right)^{7}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
2^{7}s^{28}t^{-\frac{7}{4}}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{4} and 7 to get -\frac{7}{4}.
128s^{28}t^{-\frac{7}{4}}
Calculate 2 to the power of 7 and get 128.
2^{7}\left(s^{4}\right)^{7}\left(t^{-\frac{1}{4}}\right)^{7}
Expand \left(2s^{4}t^{-\frac{1}{4}}\right)^{7}.
2^{7}s^{28}\left(t^{-\frac{1}{4}}\right)^{7}
To raise a power to another power, multiply the exponents. Multiply 4 and 7 to get 28.
2^{7}s^{28}t^{-\frac{7}{4}}
To raise a power to another power, multiply the exponents. Multiply -\frac{1}{4} and 7 to get -\frac{7}{4}.
128s^{28}t^{-\frac{7}{4}}
Calculate 2 to the power of 7 and get 128.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}