Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2s^{3}\right)^{6}\times \left(2s^{4}\right)^{-2}
Use the rules of exponents to simplify the expression.
2^{6}\left(s^{3}\right)^{6}\times 2^{-2}\left(s^{4}\right)^{-2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{6}\times 2^{-2}\left(s^{3}\right)^{6}\left(s^{4}\right)^{-2}
Use the Commutative Property of Multiplication.
2^{6}\times 2^{-2}s^{3\times 6}s^{4\left(-2\right)}
To raise a power to another power, multiply the exponents.
2^{6}\times 2^{-2}s^{18}s^{4\left(-2\right)}
Multiply 3 times 6.
2^{6}\times 2^{-2}s^{18}s^{-8}
Multiply 4 times -2.
2^{6}\times 2^{-2}s^{18-8}
To multiply powers of the same base, add their exponents.
2^{6}\times 2^{-2}s^{10}
Add the exponents 18 and -8.
2^{6-2}s^{10}
To multiply powers of the same base, add their exponents.
2^{4}s^{10}
Add the exponents 6 and -2.
\left(2s^{3}\right)^{6}\times \left(2s^{4}\right)^{-2}
Use the rules of exponents to simplify the expression.
2^{6}\left(s^{3}\right)^{6}\times 2^{-2}\left(s^{4}\right)^{-2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
2^{6}\times 2^{-2}\left(s^{3}\right)^{6}\left(s^{4}\right)^{-2}
Use the Commutative Property of Multiplication.
2^{6}\times 2^{-2}s^{3\times 6}s^{4\left(-2\right)}
To raise a power to another power, multiply the exponents.
2^{6}\times 2^{-2}s^{18}s^{4\left(-2\right)}
Multiply 3 times 6.
2^{6}\times 2^{-2}s^{18}s^{-8}
Multiply 4 times -2.
2^{6}\times 2^{-2}s^{18-8}
To multiply powers of the same base, add their exponents.
2^{6}\times 2^{-2}s^{10}
Add the exponents 18 and -8.
2^{6-2}s^{10}
To multiply powers of the same base, add their exponents.
2^{4}s^{10}
Add the exponents 6 and -2.