Solve for a
a=n\left(1-2n\right)
Solve for n
n=\frac{\sqrt{1-8a}+1}{4}
n=\frac{-\sqrt{1-8a}+1}{4}\text{, }a\leq \frac{1}{8}
Share
Copied to clipboard
\left(4n-2\right)n=-2a
Use the distributive property to multiply 2n-1 by 2.
4n^{2}-2n=-2a
Use the distributive property to multiply 4n-2 by n.
-2a=4n^{2}-2n
Swap sides so that all variable terms are on the left hand side.
\frac{-2a}{-2}=\frac{2n\left(2n-1\right)}{-2}
Divide both sides by -2.
a=\frac{2n\left(2n-1\right)}{-2}
Dividing by -2 undoes the multiplication by -2.
a=n-2n^{2}
Divide 2n\left(-1+2n\right) by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}