Solve for m
m=\frac{3x^{2}+1}{2x^{2}+4x+1}
x\neq \frac{\sqrt{2}}{2}-1\text{ and }x\neq -\frac{\sqrt{2}}{2}-1
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{\left(2m-1\right)\left(m+3\right)}-2m}{2m-3}\text{; }x=-\frac{\sqrt{\left(2m-1\right)\left(m+3\right)}+2m}{2m-3}\text{, }&m\neq \frac{3}{2}\\x=-\frac{1}{12}\text{, }&m=\frac{3}{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(2m-1\right)\left(m+3\right)}-2m}{2m-3}\text{; }x=-\frac{\sqrt{\left(2m-1\right)\left(m+3\right)}+2m}{2m-3}\text{, }&\left(m\neq \frac{3}{2}\text{ and }m\geq \frac{1}{2}\right)\text{ or }m\leq -3\\x=-\frac{1}{12}\text{, }&m=\frac{3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2mx^{2}-3x^{2}+4mx+m-1=0
Use the distributive property to multiply 2m-3 by x^{2}.
2mx^{2}+4mx+m-1=3x^{2}
Add 3x^{2} to both sides. Anything plus zero gives itself.
2mx^{2}+4mx+m=3x^{2}+1
Add 1 to both sides.
\left(2x^{2}+4x+1\right)m=3x^{2}+1
Combine all terms containing m.
\frac{\left(2x^{2}+4x+1\right)m}{2x^{2}+4x+1}=\frac{3x^{2}+1}{2x^{2}+4x+1}
Divide both sides by 2x^{2}+4x+1.
m=\frac{3x^{2}+1}{2x^{2}+4x+1}
Dividing by 2x^{2}+4x+1 undoes the multiplication by 2x^{2}+4x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}