Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

4k^{2}-32k+64-16k=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-8\right)^{2}.
4k^{2}-48k+64=0
Combine -32k and -16k to get -48k.
k=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 4\times 64}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -48 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-48\right)±\sqrt{2304-4\times 4\times 64}}{2\times 4}
Square -48.
k=\frac{-\left(-48\right)±\sqrt{2304-16\times 64}}{2\times 4}
Multiply -4 times 4.
k=\frac{-\left(-48\right)±\sqrt{2304-1024}}{2\times 4}
Multiply -16 times 64.
k=\frac{-\left(-48\right)±\sqrt{1280}}{2\times 4}
Add 2304 to -1024.
k=\frac{-\left(-48\right)±16\sqrt{5}}{2\times 4}
Take the square root of 1280.
k=\frac{48±16\sqrt{5}}{2\times 4}
The opposite of -48 is 48.
k=\frac{48±16\sqrt{5}}{8}
Multiply 2 times 4.
k=\frac{16\sqrt{5}+48}{8}
Now solve the equation k=\frac{48±16\sqrt{5}}{8} when ± is plus. Add 48 to 16\sqrt{5}.
k=2\sqrt{5}+6
Divide 48+16\sqrt{5} by 8.
k=\frac{48-16\sqrt{5}}{8}
Now solve the equation k=\frac{48±16\sqrt{5}}{8} when ± is minus. Subtract 16\sqrt{5} from 48.
k=6-2\sqrt{5}
Divide 48-16\sqrt{5} by 8.
k=2\sqrt{5}+6 k=6-2\sqrt{5}
The equation is now solved.
4k^{2}-32k+64-16k=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-8\right)^{2}.
4k^{2}-48k+64=0
Combine -32k and -16k to get -48k.
4k^{2}-48k=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{4k^{2}-48k}{4}=-\frac{64}{4}
Divide both sides by 4.
k^{2}+\left(-\frac{48}{4}\right)k=-\frac{64}{4}
Dividing by 4 undoes the multiplication by 4.
k^{2}-12k=-\frac{64}{4}
Divide -48 by 4.
k^{2}-12k=-16
Divide -64 by 4.
k^{2}-12k+\left(-6\right)^{2}=-16+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-12k+36=-16+36
Square -6.
k^{2}-12k+36=20
Add -16 to 36.
\left(k-6\right)^{2}=20
Factor k^{2}-12k+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-6\right)^{2}}=\sqrt{20}
Take the square root of both sides of the equation.
k-6=2\sqrt{5} k-6=-2\sqrt{5}
Simplify.
k=2\sqrt{5}+6 k=6-2\sqrt{5}
Add 6 to both sides of the equation.