Solve for k
k=2\sqrt{5}+6\approx 10.472135955
k=6-2\sqrt{5}\approx 1.527864045
Share
Copied to clipboard
4k^{2}-32k+64-16k=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-8\right)^{2}.
4k^{2}-48k+64=0
Combine -32k and -16k to get -48k.
k=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 4\times 64}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -48 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-48\right)±\sqrt{2304-4\times 4\times 64}}{2\times 4}
Square -48.
k=\frac{-\left(-48\right)±\sqrt{2304-16\times 64}}{2\times 4}
Multiply -4 times 4.
k=\frac{-\left(-48\right)±\sqrt{2304-1024}}{2\times 4}
Multiply -16 times 64.
k=\frac{-\left(-48\right)±\sqrt{1280}}{2\times 4}
Add 2304 to -1024.
k=\frac{-\left(-48\right)±16\sqrt{5}}{2\times 4}
Take the square root of 1280.
k=\frac{48±16\sqrt{5}}{2\times 4}
The opposite of -48 is 48.
k=\frac{48±16\sqrt{5}}{8}
Multiply 2 times 4.
k=\frac{16\sqrt{5}+48}{8}
Now solve the equation k=\frac{48±16\sqrt{5}}{8} when ± is plus. Add 48 to 16\sqrt{5}.
k=2\sqrt{5}+6
Divide 48+16\sqrt{5} by 8.
k=\frac{48-16\sqrt{5}}{8}
Now solve the equation k=\frac{48±16\sqrt{5}}{8} when ± is minus. Subtract 16\sqrt{5} from 48.
k=6-2\sqrt{5}
Divide 48-16\sqrt{5} by 8.
k=2\sqrt{5}+6 k=6-2\sqrt{5}
The equation is now solved.
4k^{2}-32k+64-16k=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2k-8\right)^{2}.
4k^{2}-48k+64=0
Combine -32k and -16k to get -48k.
4k^{2}-48k=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{4k^{2}-48k}{4}=-\frac{64}{4}
Divide both sides by 4.
k^{2}+\left(-\frac{48}{4}\right)k=-\frac{64}{4}
Dividing by 4 undoes the multiplication by 4.
k^{2}-12k=-\frac{64}{4}
Divide -48 by 4.
k^{2}-12k=-16
Divide -64 by 4.
k^{2}-12k+\left(-6\right)^{2}=-16+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-12k+36=-16+36
Square -6.
k^{2}-12k+36=20
Add -16 to 36.
\left(k-6\right)^{2}=20
Factor k^{2}-12k+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-6\right)^{2}}=\sqrt{20}
Take the square root of both sides of the equation.
k-6=2\sqrt{5} k-6=-2\sqrt{5}
Simplify.
k=2\sqrt{5}+6 k=6-2\sqrt{5}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}