Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

4k^{2}+20k+25-40>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+5\right)^{2}.
4k^{2}+20k-15>0
Subtract 40 from 25 to get -15.
4k^{2}+20k-15=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-20±\sqrt{20^{2}-4\times 4\left(-15\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 20 for b, and -15 for c in the quadratic formula.
k=\frac{-20±8\sqrt{10}}{8}
Do the calculations.
k=\sqrt{10}-\frac{5}{2} k=-\sqrt{10}-\frac{5}{2}
Solve the equation k=\frac{-20±8\sqrt{10}}{8} when ± is plus and when ± is minus.
4\left(k-\left(\sqrt{10}-\frac{5}{2}\right)\right)\left(k-\left(-\sqrt{10}-\frac{5}{2}\right)\right)>0
Rewrite the inequality by using the obtained solutions.
k-\left(\sqrt{10}-\frac{5}{2}\right)<0 k-\left(-\sqrt{10}-\frac{5}{2}\right)<0
For the product to be positive, k-\left(\sqrt{10}-\frac{5}{2}\right) and k-\left(-\sqrt{10}-\frac{5}{2}\right) have to be both negative or both positive. Consider the case when k-\left(\sqrt{10}-\frac{5}{2}\right) and k-\left(-\sqrt{10}-\frac{5}{2}\right) are both negative.
k<-\sqrt{10}-\frac{5}{2}
The solution satisfying both inequalities is k<-\sqrt{10}-\frac{5}{2}.
k-\left(-\sqrt{10}-\frac{5}{2}\right)>0 k-\left(\sqrt{10}-\frac{5}{2}\right)>0
Consider the case when k-\left(\sqrt{10}-\frac{5}{2}\right) and k-\left(-\sqrt{10}-\frac{5}{2}\right) are both positive.
k>\sqrt{10}-\frac{5}{2}
The solution satisfying both inequalities is k>\sqrt{10}-\frac{5}{2}.
k<-\sqrt{10}-\frac{5}{2}\text{; }k>\sqrt{10}-\frac{5}{2}
The final solution is the union of the obtained solutions.