Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2a\right)^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Consider \left(2a-x\right)\left(2a+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-x^{2}+a^{2}-4ax+4x^{2}-\left(x-2a\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2x\right)^{2}.
5a^{2}-x^{2}-4ax+4x^{2}-\left(x-2a\right)^{2}
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}+3x^{2}-4ax-\left(x-2a\right)^{2}
Combine -x^{2} and 4x^{2} to get 3x^{2}.
5a^{2}+3x^{2}-4ax-\left(x^{2}-4xa+4a^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-2a\right)^{2}.
5a^{2}+3x^{2}-4ax-x^{2}+4xa-4a^{2}
To find the opposite of x^{2}-4xa+4a^{2}, find the opposite of each term.
5a^{2}+2x^{2}-4ax+4xa-4a^{2}
Combine 3x^{2} and -x^{2} to get 2x^{2}.
5a^{2}+2x^{2}-4a^{2}
Combine -4ax and 4xa to get 0.
a^{2}+2x^{2}
Combine 5a^{2} and -4a^{2} to get a^{2}.
\left(2a\right)^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Consider \left(2a-x\right)\left(2a+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Expand \left(2a\right)^{2}.
4a^{2}-x^{2}+\left(a-2x\right)^{2}-\left(x-2a\right)^{2}
Calculate 2 to the power of 2 and get 4.
4a^{2}-x^{2}+a^{2}-4ax+4x^{2}-\left(x-2a\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2x\right)^{2}.
5a^{2}-x^{2}-4ax+4x^{2}-\left(x-2a\right)^{2}
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}+3x^{2}-4ax-\left(x-2a\right)^{2}
Combine -x^{2} and 4x^{2} to get 3x^{2}.
5a^{2}+3x^{2}-4ax-\left(x^{2}-4xa+4a^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(x-2a\right)^{2}.
5a^{2}+3x^{2}-4ax-x^{2}+4xa-4a^{2}
To find the opposite of x^{2}-4xa+4a^{2}, find the opposite of each term.
5a^{2}+2x^{2}-4ax+4xa-4a^{2}
Combine 3x^{2} and -x^{2} to get 2x^{2}.
5a^{2}+2x^{2}-4a^{2}
Combine -4ax and 4xa to get 0.
a^{2}+2x^{2}
Combine 5a^{2} and -4a^{2} to get a^{2}.