Evaluate
4a^{2}-2ab-4b^{2}
Expand
4a^{2}-2ab-4b^{2}
Share
Copied to clipboard
6a^{2}+4ab-9ba-6b^{2}-\left(2a+b\right)\left(a-2b\right)
Apply the distributive property by multiplying each term of 2a-3b by each term of 3a+2b.
6a^{2}-5ab-6b^{2}-\left(2a+b\right)\left(a-2b\right)
Combine 4ab and -9ba to get -5ab.
6a^{2}-5ab-6b^{2}-\left(2a^{2}-4ab+ba-2b^{2}\right)
Apply the distributive property by multiplying each term of 2a+b by each term of a-2b.
6a^{2}-5ab-6b^{2}-\left(2a^{2}-3ab-2b^{2}\right)
Combine -4ab and ba to get -3ab.
6a^{2}-5ab-6b^{2}-2a^{2}-\left(-3ab\right)-\left(-2b^{2}\right)
To find the opposite of 2a^{2}-3ab-2b^{2}, find the opposite of each term.
6a^{2}-5ab-6b^{2}-2a^{2}+3ab-\left(-2b^{2}\right)
The opposite of -3ab is 3ab.
6a^{2}-5ab-6b^{2}-2a^{2}+3ab+2b^{2}
The opposite of -2b^{2} is 2b^{2}.
4a^{2}-5ab-6b^{2}+3ab+2b^{2}
Combine 6a^{2} and -2a^{2} to get 4a^{2}.
4a^{2}-2ab-6b^{2}+2b^{2}
Combine -5ab and 3ab to get -2ab.
4a^{2}-2ab-4b^{2}
Combine -6b^{2} and 2b^{2} to get -4b^{2}.
6a^{2}+4ab-9ba-6b^{2}-\left(2a+b\right)\left(a-2b\right)
Apply the distributive property by multiplying each term of 2a-3b by each term of 3a+2b.
6a^{2}-5ab-6b^{2}-\left(2a+b\right)\left(a-2b\right)
Combine 4ab and -9ba to get -5ab.
6a^{2}-5ab-6b^{2}-\left(2a^{2}-4ab+ba-2b^{2}\right)
Apply the distributive property by multiplying each term of 2a+b by each term of a-2b.
6a^{2}-5ab-6b^{2}-\left(2a^{2}-3ab-2b^{2}\right)
Combine -4ab and ba to get -3ab.
6a^{2}-5ab-6b^{2}-2a^{2}-\left(-3ab\right)-\left(-2b^{2}\right)
To find the opposite of 2a^{2}-3ab-2b^{2}, find the opposite of each term.
6a^{2}-5ab-6b^{2}-2a^{2}+3ab-\left(-2b^{2}\right)
The opposite of -3ab is 3ab.
6a^{2}-5ab-6b^{2}-2a^{2}+3ab+2b^{2}
The opposite of -2b^{2} is 2b^{2}.
4a^{2}-5ab-6b^{2}+3ab+2b^{2}
Combine 6a^{2} and -2a^{2} to get 4a^{2}.
4a^{2}-2ab-6b^{2}+2b^{2}
Combine -5ab and 3ab to get -2ab.
4a^{2}-2ab-4b^{2}
Combine -6b^{2} and 2b^{2} to get -4b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}