Evaluate
12ab-8a-18b^{2}+6b
Expand
12ab-8a-18b^{2}+6b
Share
Copied to clipboard
4a^{2}-4a+1-9b^{2}-\left(2a-3b+1\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-9b^{2}-\left(4a^{2}-12ab+4a+9b^{2}-6b+1\right)
Square 2a-3b+1.
4a^{2}-4a+1-9b^{2}-4a^{2}+12ab-4a-9b^{2}+6b-1
To find the opposite of 4a^{2}-12ab+4a+9b^{2}-6b+1, find the opposite of each term.
-4a+1-9b^{2}+12ab-4a-9b^{2}+6b-1
Combine 4a^{2} and -4a^{2} to get 0.
-8a+1-9b^{2}+12ab-9b^{2}+6b-1
Combine -4a and -4a to get -8a.
-8a+1-18b^{2}+12ab+6b-1
Combine -9b^{2} and -9b^{2} to get -18b^{2}.
-8a-18b^{2}+12ab+6b
Subtract 1 from 1 to get 0.
4a^{2}-4a+1-9b^{2}-\left(2a-3b+1\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(2a-1\right)^{2}.
4a^{2}-4a+1-9b^{2}-\left(4a^{2}-12ab+4a+9b^{2}-6b+1\right)
Square 2a-3b+1.
4a^{2}-4a+1-9b^{2}-4a^{2}+12ab-4a-9b^{2}+6b-1
To find the opposite of 4a^{2}-12ab+4a+9b^{2}-6b+1, find the opposite of each term.
-4a+1-9b^{2}+12ab-4a-9b^{2}+6b-1
Combine 4a^{2} and -4a^{2} to get 0.
-8a+1-9b^{2}+12ab-9b^{2}+6b-1
Combine -4a and -4a to get -8a.
-8a+1-18b^{2}+12ab+6b-1
Combine -9b^{2} and -9b^{2} to get -18b^{2}.
-8a-18b^{2}+12ab+6b
Subtract 1 from 1 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}