Evaluate
72a^{2}b^{\frac{11}{3}}
Expand
72a^{2}b^{\frac{11}{3}}
Share
Copied to clipboard
2^{3}\left(a^{\frac{1}{3}}\right)^{3}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Expand \left(2a^{\frac{1}{3}}b\right)^{3}.
2^{3}a^{1}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 3 to get 1.
8a^{1}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Calculate 2 to the power of 3 and get 8.
8ab^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Calculate a to the power of 1 and get a.
8ab^{3}\times 3^{2}\left(a^{\frac{1}{2}}\right)^{2}\left(b^{\frac{1}{3}}\right)^{2}
Expand \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}.
8ab^{3}\times 3^{2}a^{1}\left(b^{\frac{1}{3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 2 to get 1.
8ab^{3}\times 3^{2}a^{1}b^{\frac{2}{3}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
8ab^{3}\times 9a^{1}b^{\frac{2}{3}}
Calculate 3 to the power of 2 and get 9.
8ab^{3}\times 9ab^{\frac{2}{3}}
Calculate a to the power of 1 and get a.
72ab^{3}ab^{\frac{2}{3}}
Multiply 8 and 9 to get 72.
72a^{2}b^{3}b^{\frac{2}{3}}
Multiply a and a to get a^{2}.
72a^{2}b^{\frac{11}{3}}
To multiply powers of the same base, add their exponents. Add 3 and \frac{2}{3} to get \frac{11}{3}.
2^{3}\left(a^{\frac{1}{3}}\right)^{3}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Expand \left(2a^{\frac{1}{3}}b\right)^{3}.
2^{3}a^{1}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 3 to get 1.
8a^{1}b^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Calculate 2 to the power of 3 and get 8.
8ab^{3}\times \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}
Calculate a to the power of 1 and get a.
8ab^{3}\times 3^{2}\left(a^{\frac{1}{2}}\right)^{2}\left(b^{\frac{1}{3}}\right)^{2}
Expand \left(3a^{\frac{1}{2}}b^{\frac{1}{3}}\right)^{2}.
8ab^{3}\times 3^{2}a^{1}\left(b^{\frac{1}{3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{2} and 2 to get 1.
8ab^{3}\times 3^{2}a^{1}b^{\frac{2}{3}}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
8ab^{3}\times 9a^{1}b^{\frac{2}{3}}
Calculate 3 to the power of 2 and get 9.
8ab^{3}\times 9ab^{\frac{2}{3}}
Calculate a to the power of 1 and get a.
72ab^{3}ab^{\frac{2}{3}}
Multiply 8 and 9 to get 72.
72a^{2}b^{3}b^{\frac{2}{3}}
Multiply a and a to get a^{2}.
72a^{2}b^{\frac{11}{3}}
To multiply powers of the same base, add their exponents. Add 3 and \frac{2}{3} to get \frac{11}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}