Evaluate
2b+2b^{2}+3a-ab-7a^{2}
Expand
2b+2b^{2}+3a-ab-7a^{2}
Quiz
Algebra
5 problems similar to:
( 2 a + b ) \cdot ( - 3 a + b + 1 ) - ( a + b ) \cdot ( a - b - 1 )
Share
Copied to clipboard
-6a^{2}+2ab+2a-3ba+b^{2}+b-\left(a+b\right)\left(a-b-1\right)
Apply the distributive property by multiplying each term of 2a+b by each term of -3a+b+1.
-6a^{2}-ab+2a+b^{2}+b-\left(a+b\right)\left(a-b-1\right)
Combine 2ab and -3ba to get -ab.
-6a^{2}-ab+2a+b^{2}+b-\left(a^{2}-ab-a+ba-b^{2}-b\right)
Apply the distributive property by multiplying each term of a+b by each term of a-b-1.
-6a^{2}-ab+2a+b^{2}+b-\left(a^{2}-a-b^{2}-b\right)
Combine -ab and ba to get 0.
-6a^{2}-ab+2a+b^{2}+b-a^{2}-\left(-a\right)-\left(-b^{2}\right)-\left(-b\right)
To find the opposite of a^{2}-a-b^{2}-b, find the opposite of each term.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a-\left(-b^{2}\right)-\left(-b\right)
The opposite of -a is a.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a+b^{2}-\left(-b\right)
The opposite of -b^{2} is b^{2}.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a+b^{2}+b
The opposite of -b is b.
-7a^{2}-ab+2a+b^{2}+b+a+b^{2}+b
Combine -6a^{2} and -a^{2} to get -7a^{2}.
-7a^{2}-ab+3a+b^{2}+b+b^{2}+b
Combine 2a and a to get 3a.
-7a^{2}-ab+3a+2b^{2}+b+b
Combine b^{2} and b^{2} to get 2b^{2}.
-7a^{2}-ab+3a+2b^{2}+2b
Combine b and b to get 2b.
-6a^{2}+2ab+2a-3ba+b^{2}+b-\left(a+b\right)\left(a-b-1\right)
Apply the distributive property by multiplying each term of 2a+b by each term of -3a+b+1.
-6a^{2}-ab+2a+b^{2}+b-\left(a+b\right)\left(a-b-1\right)
Combine 2ab and -3ba to get -ab.
-6a^{2}-ab+2a+b^{2}+b-\left(a^{2}-ab-a+ba-b^{2}-b\right)
Apply the distributive property by multiplying each term of a+b by each term of a-b-1.
-6a^{2}-ab+2a+b^{2}+b-\left(a^{2}-a-b^{2}-b\right)
Combine -ab and ba to get 0.
-6a^{2}-ab+2a+b^{2}+b-a^{2}-\left(-a\right)-\left(-b^{2}\right)-\left(-b\right)
To find the opposite of a^{2}-a-b^{2}-b, find the opposite of each term.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a-\left(-b^{2}\right)-\left(-b\right)
The opposite of -a is a.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a+b^{2}-\left(-b\right)
The opposite of -b^{2} is b^{2}.
-6a^{2}-ab+2a+b^{2}+b-a^{2}+a+b^{2}+b
The opposite of -b is b.
-7a^{2}-ab+2a+b^{2}+b+a+b^{2}+b
Combine -6a^{2} and -a^{2} to get -7a^{2}.
-7a^{2}-ab+3a+b^{2}+b+b^{2}+b
Combine 2a and a to get 3a.
-7a^{2}-ab+3a+2b^{2}+b+b
Combine b^{2} and b^{2} to get 2b^{2}.
-7a^{2}-ab+3a+2b^{2}+2b
Combine b and b to get 2b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}