Solve for y
y=\frac{2\left(z-2\right)}{z+4}
z\neq -4
Solve for z
z=\frac{4\left(y+1\right)}{2-y}
y\neq 2
Share
Copied to clipboard
2z+2y-yz-y^{2}-\left(6y-y^{2}\right)=4
Use the distributive property to multiply 2-y by z+y.
2z+2y-yz-y^{2}-6y+y^{2}=4
To find the opposite of 6y-y^{2}, find the opposite of each term.
2z-4y-yz-y^{2}+y^{2}=4
Combine 2y and -6y to get -4y.
2z-4y-yz=4
Combine -y^{2} and y^{2} to get 0.
-4y-yz=4-2z
Subtract 2z from both sides.
\left(-4-z\right)y=4-2z
Combine all terms containing y.
\left(-z-4\right)y=4-2z
The equation is in standard form.
\frac{\left(-z-4\right)y}{-z-4}=\frac{4-2z}{-z-4}
Divide both sides by -z-4.
y=\frac{4-2z}{-z-4}
Dividing by -z-4 undoes the multiplication by -z-4.
y=-\frac{2\left(2-z\right)}{z+4}
Divide 4-2z by -z-4.
2z+2y-yz-y^{2}-\left(6y-y^{2}\right)=4
Use the distributive property to multiply 2-y by z+y.
2z+2y-yz-y^{2}-6y+y^{2}=4
To find the opposite of 6y-y^{2}, find the opposite of each term.
2z-4y-yz-y^{2}+y^{2}=4
Combine 2y and -6y to get -4y.
2z-4y-yz=4
Combine -y^{2} and y^{2} to get 0.
2z-yz=4+4y
Add 4y to both sides.
\left(2-y\right)z=4+4y
Combine all terms containing z.
\left(2-y\right)z=4y+4
The equation is in standard form.
\frac{\left(2-y\right)z}{2-y}=\frac{4y+4}{2-y}
Divide both sides by 2-y.
z=\frac{4y+4}{2-y}
Dividing by 2-y undoes the multiplication by 2-y.
z=\frac{4\left(y+1\right)}{2-y}
Divide 4+4y by 2-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}