Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4-4x+x^{2}+\left(1-x\right)^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-4x+x^{2}+1-2x+x^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
5-4x+x^{2}-2x+x^{2}=\left(3-x\right)^{2}
Add 4 and 1 to get 5.
5-6x+x^{2}+x^{2}=\left(3-x\right)^{2}
Combine -4x and -2x to get -6x.
5-6x+2x^{2}=\left(3-x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
5-6x+2x^{2}=9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
5-6x+2x^{2}-9=-6x+x^{2}
Subtract 9 from both sides.
-4-6x+2x^{2}=-6x+x^{2}
Subtract 9 from 5 to get -4.
-4-6x+2x^{2}+6x=x^{2}
Add 6x to both sides.
-4+2x^{2}=x^{2}
Combine -6x and 6x to get 0.
-4+2x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-4+x^{2}=0
Combine 2x^{2} and -x^{2} to get x^{2}.
\left(x-2\right)\left(x+2\right)=0
Consider -4+x^{2}. Rewrite -4+x^{2} as x^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
To find equation solutions, solve x-2=0 and x+2=0.
4-4x+x^{2}+\left(1-x\right)^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-4x+x^{2}+1-2x+x^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
5-4x+x^{2}-2x+x^{2}=\left(3-x\right)^{2}
Add 4 and 1 to get 5.
5-6x+x^{2}+x^{2}=\left(3-x\right)^{2}
Combine -4x and -2x to get -6x.
5-6x+2x^{2}=\left(3-x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
5-6x+2x^{2}=9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
5-6x+2x^{2}+6x=9+x^{2}
Add 6x to both sides.
5+2x^{2}=9+x^{2}
Combine -6x and 6x to get 0.
5+2x^{2}-x^{2}=9
Subtract x^{2} from both sides.
5+x^{2}=9
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}=9-5
Subtract 5 from both sides.
x^{2}=4
Subtract 5 from 9 to get 4.
x=2 x=-2
Take the square root of both sides of the equation.
4-4x+x^{2}+\left(1-x\right)^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
4-4x+x^{2}+1-2x+x^{2}=\left(3-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
5-4x+x^{2}-2x+x^{2}=\left(3-x\right)^{2}
Add 4 and 1 to get 5.
5-6x+x^{2}+x^{2}=\left(3-x\right)^{2}
Combine -4x and -2x to get -6x.
5-6x+2x^{2}=\left(3-x\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
5-6x+2x^{2}=9-6x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
5-6x+2x^{2}-9=-6x+x^{2}
Subtract 9 from both sides.
-4-6x+2x^{2}=-6x+x^{2}
Subtract 9 from 5 to get -4.
-4-6x+2x^{2}+6x=x^{2}
Add 6x to both sides.
-4+2x^{2}=x^{2}
Combine -6x and 6x to get 0.
-4+2x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-4+x^{2}=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Square 0.
x=\frac{0±\sqrt{16}}{2}
Multiply -4 times -4.
x=\frac{0±4}{2}
Take the square root of 16.
x=2
Now solve the equation x=\frac{0±4}{2} when ± is plus. Divide 4 by 2.
x=-2
Now solve the equation x=\frac{0±4}{2} when ± is minus. Divide -4 by 2.
x=2 x=-2
The equation is now solved.