Solve for m
m=\frac{2\left(-1-2i-in\right)}{n+3i}
n\neq -3i
Solve for n
n=\frac{-2-4i-3im}{m+2i}
m\neq -2i
Share
Copied to clipboard
\left(2-im\right)\left(3-ni\right)=8+4i
Multiply -1 and i to get -i.
\left(2-im\right)\left(3-in\right)=8+4i
Multiply -1 and i to get -i.
6-2in-3im-mn=8+4i
Use the distributive property to multiply 2-im by 3-in.
-2in-3im-mn=8+4i-6
Subtract 6 from both sides.
-2in-3im-mn=2+4i
Subtract 6 from 8+4i to get 2+4i.
-3im-mn=2+4i-\left(-2in\right)
Subtract -2in from both sides.
\left(-3i-n\right)m=2+4i-\left(-2in\right)
Combine all terms containing m.
\left(-3i-n\right)m=2in+\left(2+4i\right)
The equation is in standard form.
\frac{\left(-3i-n\right)m}{-3i-n}=\frac{2in+\left(2+4i\right)}{-3i-n}
Divide both sides by -3i-n.
m=\frac{2in+\left(2+4i\right)}{-3i-n}
Dividing by -3i-n undoes the multiplication by -3i-n.
m=-\frac{2\left(in+\left(1+2i\right)\right)}{n+3i}
Divide 2+4i+2in by -3i-n.
\left(2-im\right)\left(3-ni\right)=8+4i
Multiply -1 and i to get -i.
\left(2-im\right)\left(3-in\right)=8+4i
Multiply -1 and i to get -i.
6-2in-3im-mn=8+4i
Use the distributive property to multiply 2-im by 3-in.
-2in-3im-mn=8+4i-6
Subtract 6 from both sides.
-2in-3im-mn=2+4i
Subtract 6 from 8+4i to get 2+4i.
-2in-mn=2+4i-\left(-3im\right)
Subtract -3im from both sides.
\left(-2i-m\right)n=2+4i-\left(-3im\right)
Combine all terms containing n.
\left(-2i-m\right)n=3im+\left(2+4i\right)
The equation is in standard form.
\frac{\left(-2i-m\right)n}{-2i-m}=\frac{3im+\left(2+4i\right)}{-2i-m}
Divide both sides by -2i-m.
n=\frac{3im+\left(2+4i\right)}{-2i-m}
Dividing by -2i-m undoes the multiplication by -2i-m.
n=-\frac{3im+\left(2+4i\right)}{m+2i}
Divide 2+4i+3im by -2i-m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}