Skip to main content
Solve for a
Tick mark Image
Solve for a_n
Tick mark Image

Similar Problems from Web Search

Share

\left(2-ai\right)a_{n}+4\left(2-ai\right)=36
Use the distributive property to multiply 2-ai by a_{n}+4.
\left(2-ia\right)a_{n}+4\left(2-ai\right)=36
Multiply -1 and i to get -i.
2a_{n}-iaa_{n}+4\left(2-ai\right)=36
Use the distributive property to multiply 2-ia by a_{n}.
2a_{n}-iaa_{n}+4\left(2-ia\right)=36
Multiply -1 and i to get -i.
2a_{n}-iaa_{n}+8-4ia=36
Use the distributive property to multiply 4 by 2-ia.
-iaa_{n}+8-4ia=36-2a_{n}
Subtract 2a_{n} from both sides.
-iaa_{n}-4ia=36-2a_{n}-8
Subtract 8 from both sides.
-iaa_{n}-4ia=28-2a_{n}
Subtract 8 from 36 to get 28.
\left(-ia_{n}-4i\right)a=28-2a_{n}
Combine all terms containing a.
\left(-4i-ia_{n}\right)a=28-2a_{n}
The equation is in standard form.
\frac{\left(-4i-ia_{n}\right)a}{-4i-ia_{n}}=\frac{28-2a_{n}}{-4i-ia_{n}}
Divide both sides by -ia_{n}-4i.
a=\frac{28-2a_{n}}{-4i-ia_{n}}
Dividing by -ia_{n}-4i undoes the multiplication by -ia_{n}-4i.
a=-\frac{2\left(14-a_{n}\right)}{ia_{n}+4i}
Divide 28-2a_{n} by -ia_{n}-4i.
\left(2-ai\right)a_{n}+4\left(2-ai\right)=36
Use the distributive property to multiply 2-ai by a_{n}+4.
\left(2-ai\right)a_{n}=36-4\left(2-ai\right)
Subtract 4\left(2-ai\right) from both sides.
\left(2-ia\right)a_{n}=36-4\left(2-ai\right)
Multiply -1 and i to get -i.
2a_{n}-iaa_{n}=36-4\left(2-ai\right)
Use the distributive property to multiply 2-ia by a_{n}.
2a_{n}-iaa_{n}=36-4\left(2-ia\right)
Multiply -1 and i to get -i.
2a_{n}-iaa_{n}=36-8+4ia
Use the distributive property to multiply -4 by 2-ia.
2a_{n}-iaa_{n}=28+4ia
Subtract 8 from 36 to get 28.
\left(2-ia\right)a_{n}=28+4ia
Combine all terms containing a_{n}.
\left(2-ia\right)a_{n}=4ia+28
The equation is in standard form.
\frac{\left(2-ia\right)a_{n}}{2-ia}=\frac{4ia+28}{2-ia}
Divide both sides by 2-ia.
a_{n}=\frac{4ia+28}{2-ia}
Dividing by 2-ia undoes the multiplication by 2-ia.
a_{n}=\frac{4\left(ia+7\right)}{2-ia}
Divide 28+4ia by 2-ia.