Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

{(2 - 2 \cdot 0.8090169943749475)} x ^ {2} + {(2 + 2 \cdot 0.8090169943749475)} \cdot {(x ^ {2} - \frac{1000}{0.5877852522924731})} = 2500
Evaluate trigonometric functions in the problem
\left(2-1.618033988749895\right)x^{2}+\left(2+2\times 0.8090169943749475\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Multiply 2 and 0.8090169943749475 to get 1.618033988749895.
0.381966011250105x^{2}+\left(2+2\times 0.8090169943749475\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Subtract 1.618033988749895 from 2 to get 0.381966011250105.
0.381966011250105x^{2}+\left(2+1.618033988749895\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Multiply 2 and 0.8090169943749475 to get 1.618033988749895.
0.381966011250105x^{2}+3.618033988749895\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Add 2 and 1.618033988749895 to get 3.618033988749895.
0.381966011250105x^{2}+3.618033988749895\left(x^{2}-\frac{10000000000000000000}{5877852522924731}\right)=2500
Expand \frac{1000}{0.5877852522924731} by multiplying both numerator and the denominator by 10000000000000000.
0.381966011250105x^{2}+3.618033988749895x^{2}-\frac{36180339887498950000}{5877852522924731}=2500
Use the distributive property to multiply 3.618033988749895 by x^{2}-\frac{10000000000000000000}{5877852522924731}.
4x^{2}-\frac{36180339887498950000}{5877852522924731}=2500
Combine 0.381966011250105x^{2} and 3.618033988749895x^{2} to get 4x^{2}.
4x^{2}=2500+\frac{36180339887498950000}{5877852522924731}
Add \frac{36180339887498950000}{5877852522924731} to both sides.
4x^{2}=\frac{50874971194810777500}{5877852522924731}
Add 2500 and \frac{36180339887498950000}{5877852522924731} to get \frac{50874971194810777500}{5877852522924731}.
x^{2}=\frac{\frac{50874971194810777500}{5877852522924731}}{4}
Divide both sides by 4.
x^{2}=\frac{50874971194810777500}{5877852522924731\times 4}
Express \frac{\frac{50874971194810777500}{5877852522924731}}{4} as a single fraction.
x^{2}=\frac{50874971194810777500}{23511410091698924}
Multiply 5877852522924731 and 4 to get 23511410091698924.
x^{2}=\frac{12718742798702694375}{5877852522924731}
Reduce the fraction \frac{50874971194810777500}{23511410091698924} to lowest terms by extracting and canceling out 4.
x=\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731} x=-\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731}
Take the square root of both sides of the equation.
{(2 - 2 \cdot 0.8090169943749475)} x ^ {2} + {(2 + 2 \cdot 0.8090169943749475)} \cdot {(x ^ {2} - \frac{1000}{0.5877852522924731})} = 2500
Evaluate trigonometric functions in the problem
\left(2-1.618033988749895\right)x^{2}+\left(2+2\times 0.8090169943749475\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Multiply 2 and 0.8090169943749475 to get 1.618033988749895.
0.381966011250105x^{2}+\left(2+2\times 0.8090169943749475\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Subtract 1.618033988749895 from 2 to get 0.381966011250105.
0.381966011250105x^{2}+\left(2+1.618033988749895\right)\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Multiply 2 and 0.8090169943749475 to get 1.618033988749895.
0.381966011250105x^{2}+3.618033988749895\left(x^{2}-\frac{1000}{0.5877852522924731}\right)=2500
Add 2 and 1.618033988749895 to get 3.618033988749895.
0.381966011250105x^{2}+3.618033988749895\left(x^{2}-\frac{10000000000000000000}{5877852522924731}\right)=2500
Expand \frac{1000}{0.5877852522924731} by multiplying both numerator and the denominator by 10000000000000000.
0.381966011250105x^{2}+3.618033988749895x^{2}-\frac{36180339887498950000}{5877852522924731}=2500
Use the distributive property to multiply 3.618033988749895 by x^{2}-\frac{10000000000000000000}{5877852522924731}.
4x^{2}-\frac{36180339887498950000}{5877852522924731}=2500
Combine 0.381966011250105x^{2} and 3.618033988749895x^{2} to get 4x^{2}.
4x^{2}-\frac{36180339887498950000}{5877852522924731}-2500=0
Subtract 2500 from both sides.
4x^{2}-\frac{50874971194810777500}{5877852522924731}=0
Subtract 2500 from -\frac{36180339887498950000}{5877852522924731} to get -\frac{50874971194810777500}{5877852522924731}.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-\frac{50874971194810777500}{5877852522924731}\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -\frac{50874971194810777500}{5877852522924731} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-\frac{50874971194810777500}{5877852522924731}\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-\frac{50874971194810777500}{5877852522924731}\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{\frac{813999539116972440000}{5877852522924731}}}{2\times 4}
Multiply -16 times -\frac{50874971194810777500}{5877852522924731}.
x=\frac{0±\frac{600\sqrt{13290470124050735325737974226149}}{5877852522924731}}{2\times 4}
Take the square root of \frac{813999539116972440000}{5877852522924731}.
x=\frac{0±\frac{600\sqrt{13290470124050735325737974226149}}{5877852522924731}}{8}
Multiply 2 times 4.
x=\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731}
Now solve the equation x=\frac{0±\frac{600\sqrt{13290470124050735325737974226149}}{5877852522924731}}{8} when ± is plus.
x=-\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731}
Now solve the equation x=\frac{0±\frac{600\sqrt{13290470124050735325737974226149}}{5877852522924731}}{8} when ± is minus.
x=\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731} x=-\frac{75\sqrt{13290470124050735325737974226149}}{5877852522924731}
The equation is now solved.