Solve for x
x=4
Graph
Share
Copied to clipboard
2-\frac{\frac{9}{28}}{\frac{3}{7}}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2-\frac{9}{28}\times \frac{7}{3}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Divide \frac{9}{28} by \frac{3}{7} by multiplying \frac{9}{28} by the reciprocal of \frac{3}{7}.
2-\frac{9\times 7}{28\times 3}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Multiply \frac{9}{28} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
2-\frac{63}{84}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Do the multiplications in the fraction \frac{9\times 7}{28\times 3}.
2-\frac{3}{4}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Reduce the fraction \frac{63}{84} to lowest terms by extracting and canceling out 21.
\frac{8}{4}-\frac{3}{4}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Convert 2 to fraction \frac{8}{4}.
\frac{8-3}{4}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}=\frac{5}{12}x\left(\frac{3}{2}+\frac{7}{4}-\frac{5}{2}\right)
Subtract 3 from 8 to get 5.
\frac{5}{4}=\frac{5}{12}x\left(\frac{6}{4}+\frac{7}{4}-\frac{5}{2}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{7}{4} to fractions with denominator 4.
\frac{5}{4}=\frac{5}{12}x\left(\frac{6+7}{4}-\frac{5}{2}\right)
Since \frac{6}{4} and \frac{7}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}=\frac{5}{12}x\left(\frac{13}{4}-\frac{5}{2}\right)
Add 6 and 7 to get 13.
\frac{5}{4}=\frac{5}{12}x\left(\frac{13}{4}-\frac{10}{4}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{13}{4} and \frac{5}{2} to fractions with denominator 4.
\frac{5}{4}=\frac{5}{12}x\times \frac{13-10}{4}
Since \frac{13}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}=\frac{5}{12}x\times \frac{3}{4}
Subtract 10 from 13 to get 3.
\frac{5}{4}=\frac{5\times 3}{12\times 4}x
Multiply \frac{5}{12} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}=\frac{15}{48}x
Do the multiplications in the fraction \frac{5\times 3}{12\times 4}.
\frac{5}{4}=\frac{5}{16}x
Reduce the fraction \frac{15}{48} to lowest terms by extracting and canceling out 3.
\frac{5}{16}x=\frac{5}{4}
Swap sides so that all variable terms are on the left hand side.
x=\frac{5}{4}\times \frac{16}{5}
Multiply both sides by \frac{16}{5}, the reciprocal of \frac{5}{16}.
x=\frac{5\times 16}{4\times 5}
Multiply \frac{5}{4} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{16}{4}
Cancel out 5 in both numerator and denominator.
x=4
Divide 16 by 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}