Evaluate
\frac{31}{16}=1.9375
Factor
\frac{31}{2 ^ {4}} = 1\frac{15}{16} = 1.9375
Share
Copied to clipboard
\frac{\frac{64}{32}-\frac{15}{32}}{\frac{21}{24}}+\frac{\frac{3}{4}}{4}
Convert 2 to fraction \frac{64}{32}.
\frac{\frac{64-15}{32}}{\frac{21}{24}}+\frac{\frac{3}{4}}{4}
Since \frac{64}{32} and \frac{15}{32} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{49}{32}}{\frac{21}{24}}+\frac{\frac{3}{4}}{4}
Subtract 15 from 64 to get 49.
\frac{\frac{49}{32}}{\frac{7}{8}}+\frac{\frac{3}{4}}{4}
Reduce the fraction \frac{21}{24} to lowest terms by extracting and canceling out 3.
\frac{49}{32}\times \frac{8}{7}+\frac{\frac{3}{4}}{4}
Divide \frac{49}{32} by \frac{7}{8} by multiplying \frac{49}{32} by the reciprocal of \frac{7}{8}.
\frac{49\times 8}{32\times 7}+\frac{\frac{3}{4}}{4}
Multiply \frac{49}{32} times \frac{8}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{392}{224}+\frac{\frac{3}{4}}{4}
Do the multiplications in the fraction \frac{49\times 8}{32\times 7}.
\frac{7}{4}+\frac{\frac{3}{4}}{4}
Reduce the fraction \frac{392}{224} to lowest terms by extracting and canceling out 56.
\frac{7}{4}+\frac{3}{4\times 4}
Express \frac{\frac{3}{4}}{4} as a single fraction.
\frac{7}{4}+\frac{3}{16}
Multiply 4 and 4 to get 16.
\frac{28}{16}+\frac{3}{16}
Least common multiple of 4 and 16 is 16. Convert \frac{7}{4} and \frac{3}{16} to fractions with denominator 16.
\frac{28+3}{16}
Since \frac{28}{16} and \frac{3}{16} have the same denominator, add them by adding their numerators.
\frac{31}{16}
Add 28 and 3 to get 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}