Solve for x
x = \frac{\sqrt{577} - 1}{2} \approx 11.510412149
x=\frac{-\sqrt{577}-1}{2}\approx -12.510412149
Graph
Share
Copied to clipboard
2x^{2}+2x-288=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 2\left(-288\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 2 for b, and -288 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 2\left(-288\right)}}{2\times 2}
Square 2.
x=\frac{-2±\sqrt{4-8\left(-288\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-2±\sqrt{4+2304}}{2\times 2}
Multiply -8 times -288.
x=\frac{-2±\sqrt{2308}}{2\times 2}
Add 4 to 2304.
x=\frac{-2±2\sqrt{577}}{2\times 2}
Take the square root of 2308.
x=\frac{-2±2\sqrt{577}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{577}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{577}}{4} when ± is plus. Add -2 to 2\sqrt{577}.
x=\frac{\sqrt{577}-1}{2}
Divide -2+2\sqrt{577} by 4.
x=\frac{-2\sqrt{577}-2}{4}
Now solve the equation x=\frac{-2±2\sqrt{577}}{4} when ± is minus. Subtract 2\sqrt{577} from -2.
x=\frac{-\sqrt{577}-1}{2}
Divide -2-2\sqrt{577} by 4.
x=\frac{\sqrt{577}-1}{2} x=\frac{-\sqrt{577}-1}{2}
The equation is now solved.
2x^{2}+2x-288=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+2x-288-\left(-288\right)=-\left(-288\right)
Add 288 to both sides of the equation.
2x^{2}+2x=-\left(-288\right)
Subtracting -288 from itself leaves 0.
2x^{2}+2x=288
Subtract -288 from 0.
\frac{2x^{2}+2x}{2}=\frac{288}{2}
Divide both sides by 2.
x^{2}+\frac{2}{2}x=\frac{288}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+x=\frac{288}{2}
Divide 2 by 2.
x^{2}+x=144
Divide 288 by 2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=144+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=144+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{577}{4}
Add 144 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{577}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{577}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{577}}{2} x+\frac{1}{2}=-\frac{\sqrt{577}}{2}
Simplify.
x=\frac{\sqrt{577}-1}{2} x=\frac{-\sqrt{577}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}