Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+7x-4=0
Multiply 2 and 2 to get 4.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-4\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 7 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 4\left(-4\right)}}{2\times 4}
Square 7.
x=\frac{-7±\sqrt{49-16\left(-4\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-7±\sqrt{49+64}}{2\times 4}
Multiply -16 times -4.
x=\frac{-7±\sqrt{113}}{2\times 4}
Add 49 to 64.
x=\frac{-7±\sqrt{113}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{113}-7}{8}
Now solve the equation x=\frac{-7±\sqrt{113}}{8} when ± is plus. Add -7 to \sqrt{113}.
x=\frac{-\sqrt{113}-7}{8}
Now solve the equation x=\frac{-7±\sqrt{113}}{8} when ± is minus. Subtract \sqrt{113} from -7.
x=\frac{\sqrt{113}-7}{8} x=\frac{-\sqrt{113}-7}{8}
The equation is now solved.
4x^{2}+7x-4=0
Multiply 2 and 2 to get 4.
4x^{2}+7x=4
Add 4 to both sides. Anything plus zero gives itself.
\frac{4x^{2}+7x}{4}=\frac{4}{4}
Divide both sides by 4.
x^{2}+\frac{7}{4}x=\frac{4}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{7}{4}x=1
Divide 4 by 4.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=1+\left(\frac{7}{8}\right)^{2}
Divide \frac{7}{4}, the coefficient of the x term, by 2 to get \frac{7}{8}. Then add the square of \frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{4}x+\frac{49}{64}=1+\frac{49}{64}
Square \frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{113}{64}
Add 1 to \frac{49}{64}.
\left(x+\frac{7}{8}\right)^{2}=\frac{113}{64}
Factor x^{2}+\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{113}{64}}
Take the square root of both sides of the equation.
x+\frac{7}{8}=\frac{\sqrt{113}}{8} x+\frac{7}{8}=-\frac{\sqrt{113}}{8}
Simplify.
x=\frac{\sqrt{113}-7}{8} x=\frac{-\sqrt{113}-7}{8}
Subtract \frac{7}{8} from both sides of the equation.