Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

11-x^{2}+8x=0
Add 2 and 9 to get 11.
-x^{2}+8x+11=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and 11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\times 11}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64+44}}{2\left(-1\right)}
Multiply 4 times 11.
x=\frac{-8±\sqrt{108}}{2\left(-1\right)}
Add 64 to 44.
x=\frac{-8±6\sqrt{3}}{2\left(-1\right)}
Take the square root of 108.
x=\frac{-8±6\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{6\sqrt{3}-8}{-2}
Now solve the equation x=\frac{-8±6\sqrt{3}}{-2} when ± is plus. Add -8 to 6\sqrt{3}.
x=4-3\sqrt{3}
Divide -8+6\sqrt{3} by -2.
x=\frac{-6\sqrt{3}-8}{-2}
Now solve the equation x=\frac{-8±6\sqrt{3}}{-2} when ± is minus. Subtract 6\sqrt{3} from -8.
x=3\sqrt{3}+4
Divide -8-6\sqrt{3} by -2.
x=4-3\sqrt{3} x=3\sqrt{3}+4
The equation is now solved.
11-x^{2}+8x=0
Add 2 and 9 to get 11.
-x^{2}+8x=-11
Subtract 11 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}+8x}{-1}=-\frac{11}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=-\frac{11}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=-\frac{11}{-1}
Divide 8 by -1.
x^{2}-8x=11
Divide -11 by -1.
x^{2}-8x+\left(-4\right)^{2}=11+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=11+16
Square -4.
x^{2}-8x+16=27
Add 11 to 16.
\left(x-4\right)^{2}=27
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{27}
Take the square root of both sides of the equation.
x-4=3\sqrt{3} x-4=-3\sqrt{3}
Simplify.
x=3\sqrt{3}+4 x=4-3\sqrt{3}
Add 4 to both sides of the equation.