Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}+6x+9\right)+3\left(x+3\right)-4=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18+3\left(x+3\right)-4=0
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+3x+9-4=0
Use the distributive property to multiply 3 by x+3.
2x^{2}+15x+18+9-4=0
Combine 12x and 3x to get 15x.
2x^{2}+15x+27-4=0
Add 18 and 9 to get 27.
2x^{2}+15x+23=0
Subtract 4 from 27 to get 23.
x=\frac{-15±\sqrt{15^{2}-4\times 2\times 23}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 15 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 2\times 23}}{2\times 2}
Square 15.
x=\frac{-15±\sqrt{225-8\times 23}}{2\times 2}
Multiply -4 times 2.
x=\frac{-15±\sqrt{225-184}}{2\times 2}
Multiply -8 times 23.
x=\frac{-15±\sqrt{41}}{2\times 2}
Add 225 to -184.
x=\frac{-15±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}-15}{4}
Now solve the equation x=\frac{-15±\sqrt{41}}{4} when ± is plus. Add -15 to \sqrt{41}.
x=\frac{-\sqrt{41}-15}{4}
Now solve the equation x=\frac{-15±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -15.
x=\frac{\sqrt{41}-15}{4} x=\frac{-\sqrt{41}-15}{4}
The equation is now solved.
2\left(x^{2}+6x+9\right)+3\left(x+3\right)-4=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
2x^{2}+12x+18+3\left(x+3\right)-4=0
Use the distributive property to multiply 2 by x^{2}+6x+9.
2x^{2}+12x+18+3x+9-4=0
Use the distributive property to multiply 3 by x+3.
2x^{2}+15x+18+9-4=0
Combine 12x and 3x to get 15x.
2x^{2}+15x+27-4=0
Add 18 and 9 to get 27.
2x^{2}+15x+23=0
Subtract 4 from 27 to get 23.
2x^{2}+15x=-23
Subtract 23 from both sides. Anything subtracted from zero gives its negation.
\frac{2x^{2}+15x}{2}=-\frac{23}{2}
Divide both sides by 2.
x^{2}+\frac{15}{2}x=-\frac{23}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=-\frac{23}{2}+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{2}x+\frac{225}{16}=-\frac{23}{2}+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{41}{16}
Add -\frac{23}{2} to \frac{225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{4}\right)^{2}=\frac{41}{16}
Factor x^{2}+\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
x+\frac{15}{4}=\frac{\sqrt{41}}{4} x+\frac{15}{4}=-\frac{\sqrt{41}}{4}
Simplify.
x=\frac{\sqrt{41}-15}{4} x=\frac{-\sqrt{41}-15}{4}
Subtract \frac{15}{4} from both sides of the equation.