Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(4\sqrt{3}+\sqrt{24}\right)\left(\sqrt{12}+\sqrt{18}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(\sqrt{12}+\sqrt{18}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(2\sqrt{3}+\sqrt{18}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(2\sqrt{3}+3\sqrt{2}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(8\sqrt{3}+4\sqrt{6}\right)\left(2\sqrt{3}+3\sqrt{2}\right)
Use the distributive property to multiply 2 by 4\sqrt{3}+2\sqrt{6}.
16\left(\sqrt{3}\right)^{2}+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
Apply the distributive property by multiplying each term of 8\sqrt{3}+4\sqrt{6} by each term of 2\sqrt{3}+3\sqrt{2}.
16\times 3+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
The square of \sqrt{3} is 3.
48+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
Multiply 16 and 3 to get 48.
48+24\sqrt{6}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
48+24\sqrt{6}+8\sqrt{3}\sqrt{3}\sqrt{2}+12\sqrt{6}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48+24\sqrt{6}+8\times 3\sqrt{2}+12\sqrt{6}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48+24\sqrt{6}+24\sqrt{2}+12\sqrt{6}\sqrt{2}
Multiply 8 and 3 to get 24.
48+24\sqrt{6}+24\sqrt{2}+12\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
48+24\sqrt{6}+24\sqrt{2}+12\times 2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
48+24\sqrt{6}+24\sqrt{2}+24\sqrt{3}
Multiply 12 and 2 to get 24.