Evaluate
24\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\approx 182.298098705
Share
Copied to clipboard
2\left(4\sqrt{3}+\sqrt{24}\right)\left(\sqrt{12}+\sqrt{18}\right)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(\sqrt{12}+\sqrt{18}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(2\sqrt{3}+\sqrt{18}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\left(4\sqrt{3}+2\sqrt{6}\right)\left(2\sqrt{3}+3\sqrt{2}\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\left(8\sqrt{3}+4\sqrt{6}\right)\left(2\sqrt{3}+3\sqrt{2}\right)
Use the distributive property to multiply 2 by 4\sqrt{3}+2\sqrt{6}.
16\left(\sqrt{3}\right)^{2}+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
Apply the distributive property by multiplying each term of 8\sqrt{3}+4\sqrt{6} by each term of 2\sqrt{3}+3\sqrt{2}.
16\times 3+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
The square of \sqrt{3} is 3.
48+24\sqrt{3}\sqrt{2}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
Multiply 16 and 3 to get 48.
48+24\sqrt{6}+8\sqrt{3}\sqrt{6}+12\sqrt{6}\sqrt{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
48+24\sqrt{6}+8\sqrt{3}\sqrt{3}\sqrt{2}+12\sqrt{6}\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
48+24\sqrt{6}+8\times 3\sqrt{2}+12\sqrt{6}\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
48+24\sqrt{6}+24\sqrt{2}+12\sqrt{6}\sqrt{2}
Multiply 8 and 3 to get 24.
48+24\sqrt{6}+24\sqrt{2}+12\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
48+24\sqrt{6}+24\sqrt{2}+12\times 2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
48+24\sqrt{6}+24\sqrt{2}+24\sqrt{3}
Multiply 12 and 2 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}