Evaluate
\frac{2x+1}{x-2}
Expand
\frac{2x+1}{x-2}
Graph
Share
Copied to clipboard
\frac{2\left(x-2\right)}{x-1}\times \frac{x^{2}-1}{x^{2}-4x+4}-\frac{1}{x-2}
Express 2\times \frac{x-2}{x-1} as a single fraction.
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x^{2}-4x+4\right)}-\frac{1}{x-2}
Multiply \frac{2\left(x-2\right)}{x-1} times \frac{x^{2}-1}{x^{2}-4x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{1}{x-2}
Factor \left(x-1\right)\left(x^{2}-4x+4\right).
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x-2\right)^{2} and x-2 is \left(x-1\right)\left(x-2\right)^{2}. Multiply \frac{1}{x-2} times \frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}.
\frac{2\left(x-2\right)\left(x^{2}-1\right)-\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Since \frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} and \frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}-2x-4x^{2}+4-x^{2}+x+2x-2}{\left(x-1\right)\left(x-2\right)^{2}}
Do the multiplications in 2\left(x-2\right)\left(x^{2}-1\right)-\left(x-2\right)\left(x-1\right).
\frac{2x^{3}+x-5x^{2}+2}{\left(x-1\right)\left(x-2\right)^{2}}
Combine like terms in 2x^{3}-2x-4x^{2}+4-x^{2}+x+2x-2.
\frac{2\left(x-1\right)\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}+x-5x^{2}+2}{\left(x-1\right)\left(x-2\right)^{2}}.
\frac{2\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{\left(x-2\right)^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{2\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{x^{2}-4x+4}
Expand \left(x-2\right)^{2}.
\frac{\frac{1}{2}\times 2\left(x-2\right)\left(2x+1\right)}{\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\times 2\left(2x+1\right)}{x-2}
Cancel out x-2 in both numerator and denominator.
\frac{2x+1}{x-2}
Expand the expression.
\frac{2\left(x-2\right)}{x-1}\times \frac{x^{2}-1}{x^{2}-4x+4}-\frac{1}{x-2}
Express 2\times \frac{x-2}{x-1} as a single fraction.
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x^{2}-4x+4\right)}-\frac{1}{x-2}
Multiply \frac{2\left(x-2\right)}{x-1} times \frac{x^{2}-1}{x^{2}-4x+4} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{1}{x-2}
Factor \left(x-1\right)\left(x^{2}-4x+4\right).
\frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x-2\right)^{2} and x-2 is \left(x-1\right)\left(x-2\right)^{2}. Multiply \frac{1}{x-2} times \frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}.
\frac{2\left(x-2\right)\left(x^{2}-1\right)-\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Since \frac{2\left(x-2\right)\left(x^{2}-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} and \frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{3}-2x-4x^{2}+4-x^{2}+x+2x-2}{\left(x-1\right)\left(x-2\right)^{2}}
Do the multiplications in 2\left(x-2\right)\left(x^{2}-1\right)-\left(x-2\right)\left(x-1\right).
\frac{2x^{3}+x-5x^{2}+2}{\left(x-1\right)\left(x-2\right)^{2}}
Combine like terms in 2x^{3}-2x-4x^{2}+4-x^{2}+x+2x-2.
\frac{2\left(x-1\right)\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x-2\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}+x-5x^{2}+2}{\left(x-1\right)\left(x-2\right)^{2}}.
\frac{2\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{\left(x-2\right)^{2}}
Cancel out x-1 in both numerator and denominator.
\frac{2\left(\frac{1}{2}x-1\right)\left(2x+1\right)}{x^{2}-4x+4}
Expand \left(x-2\right)^{2}.
\frac{\frac{1}{2}\times 2\left(x-2\right)\left(2x+1\right)}{\left(x-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{2}\times 2\left(2x+1\right)}{x-2}
Cancel out x-2 in both numerator and denominator.
\frac{2x+1}{x-2}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}