Evaluate
\frac{150000\left(a^{2}+20a+600\right)}{a\left(a+30\right)}
Expand
\frac{150000\left(a^{2}+20a+600\right)}{a\left(a+30\right)}
Share
Copied to clipboard
2000\times \frac{1500}{a}+\frac{1200}{\frac{8a+240}{a}}\times 1000
Multiply 2 and 1000 to get 2000.
\frac{2000\times 1500}{a}+\frac{1200}{\frac{8a+240}{a}}\times 1000
Express 2000\times \frac{1500}{a} as a single fraction.
\frac{2000\times 1500}{a}+\frac{1200a}{8a+240}\times 1000
Divide 1200 by \frac{8a+240}{a} by multiplying 1200 by the reciprocal of \frac{8a+240}{a}.
\frac{2000\times 1500}{a}+\frac{1200a}{8\left(a+30\right)}\times 1000
Factor the expressions that are not already factored in \frac{1200a}{8a+240}.
\frac{2000\times 1500}{a}+\frac{150a}{a+30}\times 1000
Cancel out 8 in both numerator and denominator.
\frac{2000\times 1500}{a}+\frac{150a\times 1000}{a+30}
Express \frac{150a}{a+30}\times 1000 as a single fraction.
\frac{2000\times 1500\left(a+30\right)}{a\left(a+30\right)}+\frac{150a\times 1000a}{a\left(a+30\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a+30 is a\left(a+30\right). Multiply \frac{2000\times 1500}{a} times \frac{a+30}{a+30}. Multiply \frac{150a\times 1000}{a+30} times \frac{a}{a}.
\frac{2000\times 1500\left(a+30\right)+150a\times 1000a}{a\left(a+30\right)}
Since \frac{2000\times 1500\left(a+30\right)}{a\left(a+30\right)} and \frac{150a\times 1000a}{a\left(a+30\right)} have the same denominator, add them by adding their numerators.
\frac{3000000a+90000000+150000a^{2}}{a\left(a+30\right)}
Do the multiplications in 2000\times 1500\left(a+30\right)+150a\times 1000a.
\frac{3000000a+90000000+150000a^{2}}{a^{2}+30a}
Expand a\left(a+30\right).
2000\times \frac{1500}{a}+\frac{1200}{\frac{8a+240}{a}}\times 1000
Multiply 2 and 1000 to get 2000.
\frac{2000\times 1500}{a}+\frac{1200}{\frac{8a+240}{a}}\times 1000
Express 2000\times \frac{1500}{a} as a single fraction.
\frac{2000\times 1500}{a}+\frac{1200a}{8a+240}\times 1000
Divide 1200 by \frac{8a+240}{a} by multiplying 1200 by the reciprocal of \frac{8a+240}{a}.
\frac{2000\times 1500}{a}+\frac{1200a}{8\left(a+30\right)}\times 1000
Factor the expressions that are not already factored in \frac{1200a}{8a+240}.
\frac{2000\times 1500}{a}+\frac{150a}{a+30}\times 1000
Cancel out 8 in both numerator and denominator.
\frac{2000\times 1500}{a}+\frac{150a\times 1000}{a+30}
Express \frac{150a}{a+30}\times 1000 as a single fraction.
\frac{2000\times 1500\left(a+30\right)}{a\left(a+30\right)}+\frac{150a\times 1000a}{a\left(a+30\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a and a+30 is a\left(a+30\right). Multiply \frac{2000\times 1500}{a} times \frac{a+30}{a+30}. Multiply \frac{150a\times 1000}{a+30} times \frac{a}{a}.
\frac{2000\times 1500\left(a+30\right)+150a\times 1000a}{a\left(a+30\right)}
Since \frac{2000\times 1500\left(a+30\right)}{a\left(a+30\right)} and \frac{150a\times 1000a}{a\left(a+30\right)} have the same denominator, add them by adding their numerators.
\frac{3000000a+90000000+150000a^{2}}{a\left(a+30\right)}
Do the multiplications in 2000\times 1500\left(a+30\right)+150a\times 1000a.
\frac{3000000a+90000000+150000a^{2}}{a^{2}+30a}
Expand a\left(a+30\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}