Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\times \frac{4+2\sqrt{199}}{5}-2\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Since \frac{4}{5} and \frac{2\sqrt{199}}{5} have the same denominator, add them by adding their numerators.
\left(\frac{2\left(4+2\sqrt{199}\right)}{5}-2\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Express 2\times \frac{4+2\sqrt{199}}{5} as a single fraction.
\left(\frac{2\left(4+2\sqrt{199}\right)}{5}-\frac{2\times 5}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\left(\frac{2\left(4+2\sqrt{199}\right)-2\times 5}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Since \frac{2\left(4+2\sqrt{199}\right)}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8+4\sqrt{199}-10}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Do the multiplications in 2\left(4+2\sqrt{199}\right)-2\times 5.
\left(\frac{-2+4\sqrt{199}}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Do the calculations in 8+4\sqrt{199}-10.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
To raise \frac{-2+4\sqrt{199}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{2\times 3\sqrt{11}}{5}\right)^{2}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{6\sqrt{11}}{5}\right)^{2}
Multiply 2 and 3 to get 6.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4+6\sqrt{11}}{5}\right)^{2}
Since \frac{4}{5} and \frac{6\sqrt{11}}{5} have the same denominator, add them by adding their numerators.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
To raise \frac{4+6\sqrt{11}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-2+4\sqrt{199}\right)^{2}+\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Since \frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}} and \frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
\frac{4-16\sqrt{199}+16\left(\sqrt{199}\right)^{2}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2+4\sqrt{199}\right)^{2}.
\frac{4-16\sqrt{199}+16\times 199}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
The square of \sqrt{199} is 199.
\frac{4-16\sqrt{199}+3184}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Multiply 16 and 199 to get 3184.
\frac{3188-16\sqrt{199}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Add 4 and 3184 to get 3188.
\frac{3188-16\sqrt{199}}{25}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+36\left(\sqrt{11}\right)^{2}}{5^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+6\sqrt{11}\right)^{2}.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+36\times 11}{5^{2}}
The square of \sqrt{11} is 11.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+396}{5^{2}}
Multiply 36 and 11 to get 396.
\frac{3188-16\sqrt{199}}{25}+\frac{412+48\sqrt{11}}{5^{2}}
Add 16 and 396 to get 412.
\frac{3188-16\sqrt{199}}{25}+\frac{412+48\sqrt{11}}{25}
Calculate 5 to the power of 2 and get 25.
\frac{3188-16\sqrt{199}+412+48\sqrt{11}}{25}
Since \frac{3188-16\sqrt{199}}{25} and \frac{412+48\sqrt{11}}{25} have the same denominator, add them by adding their numerators.
\frac{3600-16\sqrt{199}+48\sqrt{11}}{25}
Do the calculations in 3188-16\sqrt{199}+412+48\sqrt{11}.
\left(2\times \frac{4+2\sqrt{199}}{5}-2\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Since \frac{4}{5} and \frac{2\sqrt{199}}{5} have the same denominator, add them by adding their numerators.
\left(\frac{2\left(4+2\sqrt{199}\right)}{5}-2\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Express 2\times \frac{4+2\sqrt{199}}{5} as a single fraction.
\left(\frac{2\left(4+2\sqrt{199}\right)}{5}-\frac{2\times 5}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5}{5}.
\left(\frac{2\left(4+2\sqrt{199}\right)-2\times 5}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Since \frac{2\left(4+2\sqrt{199}\right)}{5} and \frac{2\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{8+4\sqrt{199}-10}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Do the multiplications in 2\left(4+2\sqrt{199}\right)-2\times 5.
\left(\frac{-2+4\sqrt{199}}{5}\right)^{2}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
Do the calculations in 8+4\sqrt{199}-10.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{2\sqrt{99}}{5}\right)^{2}
To raise \frac{-2+4\sqrt{199}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{2\times 3\sqrt{11}}{5}\right)^{2}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4}{5}+\frac{6\sqrt{11}}{5}\right)^{2}
Multiply 2 and 3 to get 6.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\left(\frac{4+6\sqrt{11}}{5}\right)^{2}
Since \frac{4}{5} and \frac{6\sqrt{11}}{5} have the same denominator, add them by adding their numerators.
\frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
To raise \frac{4+6\sqrt{11}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-2+4\sqrt{199}\right)^{2}+\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Since \frac{\left(-2+4\sqrt{199}\right)^{2}}{5^{2}} and \frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
\frac{4-16\sqrt{199}+16\left(\sqrt{199}\right)^{2}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2+4\sqrt{199}\right)^{2}.
\frac{4-16\sqrt{199}+16\times 199}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
The square of \sqrt{199} is 199.
\frac{4-16\sqrt{199}+3184}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Multiply 16 and 199 to get 3184.
\frac{3188-16\sqrt{199}}{5^{2}}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Add 4 and 3184 to get 3188.
\frac{3188-16\sqrt{199}}{25}+\frac{\left(4+6\sqrt{11}\right)^{2}}{5^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+36\left(\sqrt{11}\right)^{2}}{5^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+6\sqrt{11}\right)^{2}.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+36\times 11}{5^{2}}
The square of \sqrt{11} is 11.
\frac{3188-16\sqrt{199}}{25}+\frac{16+48\sqrt{11}+396}{5^{2}}
Multiply 36 and 11 to get 396.
\frac{3188-16\sqrt{199}}{25}+\frac{412+48\sqrt{11}}{5^{2}}
Add 16 and 396 to get 412.
\frac{3188-16\sqrt{199}}{25}+\frac{412+48\sqrt{11}}{25}
Calculate 5 to the power of 2 and get 25.
\frac{3188-16\sqrt{199}+412+48\sqrt{11}}{25}
Since \frac{3188-16\sqrt{199}}{25} and \frac{412+48\sqrt{11}}{25} have the same denominator, add them by adding their numerators.
\frac{3600-16\sqrt{199}+48\sqrt{11}}{25}
Do the calculations in 3188-16\sqrt{199}+412+48\sqrt{11}.