Evaluate
\frac{5\sqrt{3}}{3}\approx 2.886751346
Share
Copied to clipboard
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3}{3\sqrt{3}}-\left(\sqrt{3}-1\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\left(\sqrt{3}-1\right)^{2}
Rationalize the denominator of \frac{3}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3\sqrt{3}}{3\times 3}-\left(\sqrt{3}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(\sqrt{3}-1\right)^{2}
Cancel out 3 in both numerator and denominator.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)+\frac{5}{3}\sqrt{3}-4
Combine -\frac{\sqrt{3}}{3} and 2\sqrt{3} to get \frac{5}{3}\sqrt{3}.
2\left(\sqrt{3}\right)^{2}-2+\frac{5}{3}\sqrt{3}-4
Use the distributive property to multiply 2\sqrt{3}-2 by \sqrt{3}+1 and combine like terms.
2\times 3-2+\frac{5}{3}\sqrt{3}-4
The square of \sqrt{3} is 3.
6-2+\frac{5}{3}\sqrt{3}-4
Multiply 2 and 3 to get 6.
4+\frac{5}{3}\sqrt{3}-4
Subtract 2 from 6 to get 4.
\frac{5}{3}\sqrt{3}
Subtract 4 from 4 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}