Skip to main content
Evaluate
Tick mark Image

Share

\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3}{3\sqrt{3}}-\left(\sqrt{3}-1\right)^{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}-\left(\sqrt{3}-1\right)^{2}
Rationalize the denominator of \frac{3}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{3\sqrt{3}}{3\times 3}-\left(\sqrt{3}-1\right)^{2}
The square of \sqrt{3} is 3.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(\sqrt{3}-1\right)^{2}
Cancel out 3 in both numerator and denominator.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(3-2\sqrt{3}+1\right)
The square of \sqrt{3} is 3.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-\left(4-2\sqrt{3}\right)
Add 3 and 1 to get 4.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)-\frac{\sqrt{3}}{3}-4+2\sqrt{3}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\left(2\sqrt{3}-2\right)\left(\sqrt{3}+1\right)+\frac{5}{3}\sqrt{3}-4
Combine -\frac{\sqrt{3}}{3} and 2\sqrt{3} to get \frac{5}{3}\sqrt{3}.
2\left(\sqrt{3}\right)^{2}-2+\frac{5}{3}\sqrt{3}-4
Use the distributive property to multiply 2\sqrt{3}-2 by \sqrt{3}+1 and combine like terms.
2\times 3-2+\frac{5}{3}\sqrt{3}-4
The square of \sqrt{3} is 3.
6-2+\frac{5}{3}\sqrt{3}-4
Multiply 2 and 3 to get 6.
4+\frac{5}{3}\sqrt{3}-4
Subtract 2 from 6 to get 4.
\frac{5}{3}\sqrt{3}
Subtract 4 from 4 to get 0.