Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1+\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-1\right)^{2}.
4\times 3-4\sqrt{3}+1+\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)
The square of \sqrt{3} is 3.
12-4\sqrt{3}+1+\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)
Multiply 4 and 3 to get 12.
13-4\sqrt{3}+\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)
Add 12 and 1 to get 13.
13-4\sqrt{3}+\left(\sqrt{3}\right)^{2}-4
Consider \left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
13-4\sqrt{3}+3-4
The square of \sqrt{3} is 3.
13-4\sqrt{3}-1
Subtract 4 from 3 to get -1.
12-4\sqrt{3}
Subtract 1 from 13 to get 12.