Evaluate
24\sqrt{21}+454\approx 563.981816679
Factor
2 {(12 \sqrt{21} + 227)} = 563.981816679
Quiz
Arithmetic
5 problems similar to:
( 2 \sqrt { 3 } + 8 \sqrt { 7 } ) ( \sqrt { 3 } + 8 \sqrt { 7 } )
Share
Copied to clipboard
2\left(\sqrt{3}\right)^{2}+16\sqrt{3}\sqrt{7}+8\sqrt{7}\sqrt{3}+64\left(\sqrt{7}\right)^{2}
Apply the distributive property by multiplying each term of 2\sqrt{3}+8\sqrt{7} by each term of \sqrt{3}+8\sqrt{7}.
2\times 3+16\sqrt{3}\sqrt{7}+8\sqrt{7}\sqrt{3}+64\left(\sqrt{7}\right)^{2}
The square of \sqrt{3} is 3.
6+16\sqrt{3}\sqrt{7}+8\sqrt{7}\sqrt{3}+64\left(\sqrt{7}\right)^{2}
Multiply 2 and 3 to get 6.
6+16\sqrt{21}+8\sqrt{7}\sqrt{3}+64\left(\sqrt{7}\right)^{2}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
6+16\sqrt{21}+8\sqrt{21}+64\left(\sqrt{7}\right)^{2}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
6+24\sqrt{21}+64\left(\sqrt{7}\right)^{2}
Combine 16\sqrt{21} and 8\sqrt{21} to get 24\sqrt{21}.
6+24\sqrt{21}+64\times 7
The square of \sqrt{7} is 7.
6+24\sqrt{21}+448
Multiply 64 and 7 to get 448.
454+24\sqrt{21}
Add 6 and 448 to get 454.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}