Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2\sqrt{3}+3\times 2\sqrt{2}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{3}+6\sqrt{2}\right)^{2}
Multiply 3 and 2 to get 6.
4\left(\sqrt{3}\right)^{2}+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+6\sqrt{2}\right)^{2}.
4\times 3+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
12+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12+24\sqrt{6}+36\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12+24\sqrt{6}+36\times 2
The square of \sqrt{2} is 2.
12+24\sqrt{6}+72
Multiply 36 and 2 to get 72.
84+24\sqrt{6}
Add 12 and 72 to get 84.
\left(2\sqrt{3}+3\times 2\sqrt{2}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(2\sqrt{3}+6\sqrt{2}\right)^{2}
Multiply 3 and 2 to get 6.
4\left(\sqrt{3}\right)^{2}+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+6\sqrt{2}\right)^{2}.
4\times 3+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
12+24\sqrt{3}\sqrt{2}+36\left(\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
12+24\sqrt{6}+36\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12+24\sqrt{6}+36\times 2
The square of \sqrt{2} is 2.
12+24\sqrt{6}+72
Multiply 36 and 2 to get 72.
84+24\sqrt{6}
Add 12 and 72 to get 84.