Evaluate
2\sqrt{3}+\frac{11}{2}\approx 8.964101615
Share
Copied to clipboard
\left(2\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Consider \left(2\sqrt{3}+\sqrt{6}\right)\left(2\sqrt{3}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Expand \left(2\sqrt{3}\right)^{2}.
4\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}\right)^{2}-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Calculate 2 to the power of 2 and get 4.
4\times 3-\left(\sqrt{6}\right)^{2}-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
The square of \sqrt{3} is 3.
12-\left(\sqrt{6}\right)^{2}-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Multiply 4 and 3 to get 12.
12-6-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
The square of \sqrt{6} is 6.
6-\sqrt{2}\left(\sqrt{\frac{1}{8}}-\sqrt{6}\right)
Subtract 6 from 12 to get 6.
6-\sqrt{2}\left(\frac{\sqrt{1}}{\sqrt{8}}-\sqrt{6}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
6-\sqrt{2}\left(\frac{1}{\sqrt{8}}-\sqrt{6}\right)
Calculate the square root of 1 and get 1.
6-\sqrt{2}\left(\frac{1}{2\sqrt{2}}-\sqrt{6}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6-\sqrt{2}\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\sqrt{6}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
6-\sqrt{2}\left(\frac{\sqrt{2}}{2\times 2}-\sqrt{6}\right)
The square of \sqrt{2} is 2.
6-\sqrt{2}\left(\frac{\sqrt{2}}{4}-\sqrt{6}\right)
Multiply 2 and 2 to get 4.
6-\sqrt{2}\left(\frac{\sqrt{2}}{4}-\frac{4\sqrt{6}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{6} times \frac{4}{4}.
6-\sqrt{2}\times \frac{\sqrt{2}-4\sqrt{6}}{4}
Since \frac{\sqrt{2}}{4} and \frac{4\sqrt{6}}{4} have the same denominator, subtract them by subtracting their numerators.
6-\frac{\sqrt{2}\left(\sqrt{2}-4\sqrt{6}\right)}{4}
Express \sqrt{2}\times \frac{\sqrt{2}-4\sqrt{6}}{4} as a single fraction.
6-\frac{\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}}{4}
Use the distributive property to multiply \sqrt{2} by \sqrt{2}-4\sqrt{6}.
6-\frac{2-4\sqrt{2}\sqrt{6}}{4}
The square of \sqrt{2} is 2.
6-\frac{2-4\sqrt{2}\sqrt{2}\sqrt{3}}{4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
6-\frac{2-4\times 2\sqrt{3}}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
6-\frac{2-8\sqrt{3}}{4}
Multiply -4 and 2 to get -8.
\frac{6\times 4}{4}-\frac{2-8\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{4}{4}.
\frac{6\times 4-\left(2-8\sqrt{3}\right)}{4}
Since \frac{6\times 4}{4} and \frac{2-8\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{24-2+8\sqrt{3}}{4}
Do the multiplications in 6\times 4-\left(2-8\sqrt{3}\right).
\frac{22+8\sqrt{3}}{4}
Do the calculations in 24-2+8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}