Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{2}\right)^{2}-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-1\right)^{2}.
4\times 2-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
The square of \sqrt{2} is 2.
8-4\sqrt{2}+1-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Multiply 4 and 2 to get 8.
9-4\sqrt{2}-\left(1+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{6}\right)
Add 8 and 1 to get 9.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Use the distributive property to multiply 1+\sqrt{3} by \sqrt{2}-\sqrt{6}.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{6}\right)
Combine -\sqrt{6} and \sqrt{6} to get 0.
9-4\sqrt{2}-\left(\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
9-4\sqrt{2}-\left(\sqrt{2}-3\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
9-4\sqrt{2}-\left(-2\sqrt{2}\right)
Combine \sqrt{2} and -3\sqrt{2} to get -2\sqrt{2}.
9-4\sqrt{2}+2\sqrt{2}
The opposite of -2\sqrt{2} is 2\sqrt{2}.
9-2\sqrt{2}
Combine -4\sqrt{2} and 2\sqrt{2} to get -2\sqrt{2}.