Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(2^{\frac{1}{3}}\right)^{3}+3\times \left(2^{\frac{1}{3}}\right)^{2}\times 2^{-\frac{2}{3}}+3\times 2^{\frac{1}{3}}\times \left(2^{-\frac{2}{3}}\right)^{2}+\left(2^{-\frac{2}{3}}\right)^{3}
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(2^{\frac{1}{3}}+2^{-\frac{2}{3}}\right)^{3}.
2^{1}+3\times \left(2^{\frac{1}{3}}\right)^{2}\times 2^{-\frac{2}{3}}+3\times 2^{\frac{1}{3}}\times \left(2^{-\frac{2}{3}}\right)^{2}+\left(2^{-\frac{2}{3}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 3 to get 1.
2^{1}+3\times 2^{\frac{2}{3}}\times 2^{-\frac{2}{3}}+3\times 2^{\frac{1}{3}}\times \left(2^{-\frac{2}{3}}\right)^{2}+\left(2^{-\frac{2}{3}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
2^{1}+3+3\times 2^{\frac{1}{3}}\times \left(2^{-\frac{2}{3}}\right)^{2}+\left(2^{-\frac{2}{3}}\right)^{3}
Multiply 2^{\frac{2}{3}} and 2^{-\frac{2}{3}} to get 1.
2^{1}+3+3\times 2^{\frac{1}{3}}\times 2^{-\frac{4}{3}}+\left(2^{-\frac{2}{3}}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -\frac{2}{3} and 2 to get -\frac{4}{3}.
2^{1}+3+3\times 2^{-1}+\left(2^{-\frac{2}{3}}\right)^{3}
To multiply powers of the same base, add their exponents. Add \frac{1}{3} and -\frac{4}{3} to get -1.
2^{1}+3+3\times 2^{-1}+2^{-2}
To raise a power to another power, multiply the exponents. Multiply -\frac{2}{3} and 3 to get -2.
2+3+3\times 2^{-1}+2^{-2}
Calculate 2 to the power of 1 and get 2.
5+3\times 2^{-1}+2^{-2}
Add 2 and 3 to get 5.
5+3\times \frac{1}{2}+2^{-2}
Calculate 2 to the power of -1 and get \frac{1}{2}.
5+\frac{3}{2}+2^{-2}
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
\frac{13}{2}+2^{-2}
Add 5 and \frac{3}{2} to get \frac{13}{2}.
\frac{13}{2}+\frac{1}{4}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{27}{4}
Add \frac{13}{2} and \frac{1}{4} to get \frac{27}{4}.