Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+6y-y^{2}=9
Use the distributive property to multiply 2+y by 8-y and combine like terms.
16+6y-y^{2}-9=0
Subtract 9 from both sides.
7+6y-y^{2}=0
Subtract 9 from 16 to get 7.
-y^{2}+6y+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 7}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 6 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-6±\sqrt{36-4\left(-1\right)\times 7}}{2\left(-1\right)}
Square 6.
y=\frac{-6±\sqrt{36+4\times 7}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-6±\sqrt{36+28}}{2\left(-1\right)}
Multiply 4 times 7.
y=\frac{-6±\sqrt{64}}{2\left(-1\right)}
Add 36 to 28.
y=\frac{-6±8}{2\left(-1\right)}
Take the square root of 64.
y=\frac{-6±8}{-2}
Multiply 2 times -1.
y=\frac{2}{-2}
Now solve the equation y=\frac{-6±8}{-2} when ± is plus. Add -6 to 8.
y=-1
Divide 2 by -2.
y=-\frac{14}{-2}
Now solve the equation y=\frac{-6±8}{-2} when ± is minus. Subtract 8 from -6.
y=7
Divide -14 by -2.
y=-1 y=7
The equation is now solved.
16+6y-y^{2}=9
Use the distributive property to multiply 2+y by 8-y and combine like terms.
6y-y^{2}=9-16
Subtract 16 from both sides.
6y-y^{2}=-7
Subtract 16 from 9 to get -7.
-y^{2}+6y=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-y^{2}+6y}{-1}=-\frac{7}{-1}
Divide both sides by -1.
y^{2}+\frac{6}{-1}y=-\frac{7}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-6y=-\frac{7}{-1}
Divide 6 by -1.
y^{2}-6y=7
Divide -7 by -1.
y^{2}-6y+\left(-3\right)^{2}=7+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-6y+9=7+9
Square -3.
y^{2}-6y+9=16
Add 7 to 9.
\left(y-3\right)^{2}=16
Factor y^{2}-6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
y-3=4 y-3=-4
Simplify.
y=7 y=-1
Add 3 to both sides of the equation.