Evaluate
-4-29i
Real Part
-4
Share
Copied to clipboard
2+i-\left(4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3i^{2}\right)
Multiply complex numbers 4-6i and -3+3i like you multiply binomials.
2+i-\left(4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3\left(-1\right)\right)
By definition, i^{2} is -1.
2+i-\left(-12+12i+18i+18\right)
Do the multiplications in 4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3\left(-1\right).
2+i-\left(-12+18+\left(12+18\right)i\right)
Combine the real and imaginary parts in -12+12i+18i+18.
2+i-\left(6+30i\right)
Do the additions in -12+18+\left(12+18\right)i.
2-6+\left(1-30\right)i
Subtract 6+30i from 2+i by subtracting corresponding real and imaginary parts.
-4-29i
Subtract 6 from 2. Subtract 30 from 1.
Re(2+i-\left(4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3i^{2}\right))
Multiply complex numbers 4-6i and -3+3i like you multiply binomials.
Re(2+i-\left(4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3\left(-1\right)\right))
By definition, i^{2} is -1.
Re(2+i-\left(-12+12i+18i+18\right))
Do the multiplications in 4\left(-3\right)+4\times \left(3i\right)-6i\left(-3\right)-6\times 3\left(-1\right).
Re(2+i-\left(-12+18+\left(12+18\right)i\right))
Combine the real and imaginary parts in -12+12i+18i+18.
Re(2+i-\left(6+30i\right))
Do the additions in -12+18+\left(12+18\right)i.
Re(2-6+\left(1-30\right)i)
Subtract 6+30i from 2+i by subtracting corresponding real and imaginary parts.
Re(-4-29i)
Subtract 6 from 2. Subtract 30 from 1.
-4
The real part of -4-29i is -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}