Skip to main content
Solve for k_1 (complex solution)
Tick mark Image
Solve for k_1
Tick mark Image
Solve for k_2 (complex solution)
Tick mark Image
Solve for k_2
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=0
Use the distributive property to multiply 2+3k_{1} by x^{2}.
3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
3k_{1}x^{2}+6k_{1}k_{2}x-6=-2x^{2}-3k_{2}^{2}
Subtract 3k_{2}^{2} from both sides.
3k_{1}x^{2}+6k_{1}k_{2}x=-2x^{2}-3k_{2}^{2}+6
Add 6 to both sides.
\left(3x^{2}+6k_{2}x\right)k_{1}=-2x^{2}-3k_{2}^{2}+6
Combine all terms containing k_{1}.
\left(3x^{2}+6k_{2}x\right)k_{1}=6-3k_{2}^{2}-2x^{2}
The equation is in standard form.
\frac{\left(3x^{2}+6k_{2}x\right)k_{1}}{3x^{2}+6k_{2}x}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Divide both sides by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Dividing by 3x^{2}+6k_{2}x undoes the multiplication by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x\left(x+2k_{2}\right)}
Divide -2x^{2}-3k_{2}^{2}+6 by 3x^{2}+6k_{2}x.
2x^{2}+3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=0
Use the distributive property to multiply 2+3k_{1} by x^{2}.
3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
3k_{1}x^{2}+6k_{1}k_{2}x-6=-2x^{2}-3k_{2}^{2}
Subtract 3k_{2}^{2} from both sides.
3k_{1}x^{2}+6k_{1}k_{2}x=-2x^{2}-3k_{2}^{2}+6
Add 6 to both sides.
\left(3x^{2}+6k_{2}x\right)k_{1}=-2x^{2}-3k_{2}^{2}+6
Combine all terms containing k_{1}.
\left(3x^{2}+6k_{2}x\right)k_{1}=6-3k_{2}^{2}-2x^{2}
The equation is in standard form.
\frac{\left(3x^{2}+6k_{2}x\right)k_{1}}{3x^{2}+6k_{2}x}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Divide both sides by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Dividing by 3x^{2}+6k_{2}x undoes the multiplication by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x\left(x+2k_{2}\right)}
Divide -2x^{2}-3k_{2}^{2}+6 by 3x^{2}+6k_{2}x.