Solve for k_1 (complex solution)
\left\{\begin{matrix}k_{1}=-\frac{2x^{2}+3k_{2}^{2}-6}{3x\left(x+2k_{2}\right)}\text{, }&x\neq -2k_{2}\text{ and }x\neq 0\\k_{1}\in \mathrm{C}\text{, }&\left(x=0\text{ and }k_{2}=\sqrt{2}\right)\text{ or }\left(x=0\text{ and }k_{2}=-\sqrt{2}\right)\text{ or }\left(x=\frac{2\sqrt{66}}{11}\text{ and }k_{2}=-\frac{\sqrt{66}}{11}\right)\text{ or }\left(x=-\frac{2\sqrt{66}}{11}\text{ and }k_{2}=\frac{\sqrt{66}}{11}\right)\end{matrix}\right.
Solve for k_1
\left\{\begin{matrix}k_{1}=-\frac{2x^{2}+3k_{2}^{2}-6}{3x\left(x+2k_{2}\right)}\text{, }&x\neq -2k_{2}\text{ and }x\neq 0\\k_{1}\in \mathrm{R}\text{, }&\left(k_{2}=\frac{\sqrt{66}}{11}\text{ and }x=-\frac{2\sqrt{66}}{11}\right)\text{ or }\left(k_{2}=-\frac{\sqrt{66}}{11}\text{ and }x=\frac{2\sqrt{66}}{11}\right)\text{ or }\left(x=0\text{ and }|k_{2}|=\sqrt{2}\right)\end{matrix}\right.
Solve for k_2 (complex solution)
k_{2}=\frac{\sqrt{18+9\left(k_{1}x\right)^{2}-6x^{2}-9k_{1}x^{2}}}{3}-k_{1}x
k_{2}=-\frac{\sqrt{18+9\left(k_{1}x\right)^{2}-6x^{2}-9k_{1}x^{2}}}{3}-k_{1}x
Solve for k_2
k_{2}=\frac{\sqrt{18+9\left(k_{1}x\right)^{2}-6x^{2}-9k_{1}x^{2}}}{3}-k_{1}x
k_{2}=-\frac{\sqrt{18+9\left(k_{1}x\right)^{2}-6x^{2}-9k_{1}x^{2}}}{3}-k_{1}x\text{, }|x|\leq \frac{2\sqrt{66}}{11}\text{ or }k_{1}\geq \frac{\sqrt{297x^{4}-648x^{2}}}{18x^{2}}+\frac{1}{2}\text{ or }k_{1}\leq -\frac{\sqrt{297x^{4}-648x^{2}}}{18x^{2}}+\frac{1}{2}
Graph
Share
Copied to clipboard
2x^{2}+3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=0
Use the distributive property to multiply 2+3k_{1} by x^{2}.
3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
3k_{1}x^{2}+6k_{1}k_{2}x-6=-2x^{2}-3k_{2}^{2}
Subtract 3k_{2}^{2} from both sides.
3k_{1}x^{2}+6k_{1}k_{2}x=-2x^{2}-3k_{2}^{2}+6
Add 6 to both sides.
\left(3x^{2}+6k_{2}x\right)k_{1}=-2x^{2}-3k_{2}^{2}+6
Combine all terms containing k_{1}.
\left(3x^{2}+6k_{2}x\right)k_{1}=6-3k_{2}^{2}-2x^{2}
The equation is in standard form.
\frac{\left(3x^{2}+6k_{2}x\right)k_{1}}{3x^{2}+6k_{2}x}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Divide both sides by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Dividing by 3x^{2}+6k_{2}x undoes the multiplication by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x\left(x+2k_{2}\right)}
Divide -2x^{2}-3k_{2}^{2}+6 by 3x^{2}+6k_{2}x.
2x^{2}+3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=0
Use the distributive property to multiply 2+3k_{1} by x^{2}.
3k_{1}x^{2}+6k_{1}k_{2}x+3k_{2}^{2}-6=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
3k_{1}x^{2}+6k_{1}k_{2}x-6=-2x^{2}-3k_{2}^{2}
Subtract 3k_{2}^{2} from both sides.
3k_{1}x^{2}+6k_{1}k_{2}x=-2x^{2}-3k_{2}^{2}+6
Add 6 to both sides.
\left(3x^{2}+6k_{2}x\right)k_{1}=-2x^{2}-3k_{2}^{2}+6
Combine all terms containing k_{1}.
\left(3x^{2}+6k_{2}x\right)k_{1}=6-3k_{2}^{2}-2x^{2}
The equation is in standard form.
\frac{\left(3x^{2}+6k_{2}x\right)k_{1}}{3x^{2}+6k_{2}x}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Divide both sides by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x^{2}+6k_{2}x}
Dividing by 3x^{2}+6k_{2}x undoes the multiplication by 3x^{2}+6k_{2}x.
k_{1}=\frac{6-3k_{2}^{2}-2x^{2}}{3x\left(x+2k_{2}\right)}
Divide -2x^{2}-3k_{2}^{2}+6 by 3x^{2}+6k_{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}