Solve for x
x=-4
x=1
Graph
Share
Copied to clipboard
8+12x+4x^{2}=24
Use the distributive property to multiply 2+2x by 4+2x and combine like terms.
8+12x+4x^{2}-24=0
Subtract 24 from both sides.
-16+12x+4x^{2}=0
Subtract 24 from 8 to get -16.
4x^{2}+12x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 4\left(-16\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 4\left(-16\right)}}{2\times 4}
Square 12.
x=\frac{-12±\sqrt{144-16\left(-16\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-12±\sqrt{144+256}}{2\times 4}
Multiply -16 times -16.
x=\frac{-12±\sqrt{400}}{2\times 4}
Add 144 to 256.
x=\frac{-12±20}{2\times 4}
Take the square root of 400.
x=\frac{-12±20}{8}
Multiply 2 times 4.
x=\frac{8}{8}
Now solve the equation x=\frac{-12±20}{8} when ± is plus. Add -12 to 20.
x=1
Divide 8 by 8.
x=-\frac{32}{8}
Now solve the equation x=\frac{-12±20}{8} when ± is minus. Subtract 20 from -12.
x=-4
Divide -32 by 8.
x=1 x=-4
The equation is now solved.
8+12x+4x^{2}=24
Use the distributive property to multiply 2+2x by 4+2x and combine like terms.
12x+4x^{2}=24-8
Subtract 8 from both sides.
12x+4x^{2}=16
Subtract 8 from 24 to get 16.
4x^{2}+12x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+12x}{4}=\frac{16}{4}
Divide both sides by 4.
x^{2}+\frac{12}{4}x=\frac{16}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+3x=\frac{16}{4}
Divide 12 by 4.
x^{2}+3x=4
Divide 16 by 4.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Simplify.
x=1 x=-4
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}