Solve for A
A=\frac{\left(4\sqrt{2}+6\right)^{\frac{n}{2}}}{n}-\sqrt{2}B
n\neq 0
Solve for B
B=-\frac{\sqrt{2}\left(-\left(2\left(2\sqrt{2}+3\right)\right)^{\frac{n}{2}}+An\right)}{2n}
n\neq 0
Share
Copied to clipboard
An+\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}
Swap sides so that all variable terms are on the left hand side.
An=\left(2+\sqrt{2}\right)^{n}-\sqrt{2}Bn
Subtract \sqrt{2}Bn from both sides.
An=\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn
Reorder the terms.
nA=\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn
The equation is in standard form.
\frac{nA}{n}=\frac{\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn}{n}
Divide both sides by n.
A=\frac{\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn}{n}
Dividing by n undoes the multiplication by n.
A=\frac{\left(\sqrt{2}+2\right)^{n}}{n}-\sqrt{2}B
Divide \left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn by n.
An+\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}-An
Subtract An from both sides.
\sqrt{2}nB=\left(\sqrt{2}+2\right)^{n}-An
The equation is in standard form.
\frac{\sqrt{2}nB}{\sqrt{2}n}=\frac{\left(\sqrt{2}+2\right)^{n}-An}{\sqrt{2}n}
Divide both sides by \sqrt{2}n.
B=\frac{\left(\sqrt{2}+2\right)^{n}-An}{\sqrt{2}n}
Dividing by \sqrt{2}n undoes the multiplication by \sqrt{2}n.
B=\frac{\sqrt{2}\left(\sqrt{2}+2\right)^{n}}{2n}-\frac{\sqrt{2}A}{2}
Divide \left(2+\sqrt{2}\right)^{n}-An by \sqrt{2}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}