Skip to main content
Solve for A
Tick mark Image
Solve for B
Tick mark Image

Similar Problems from Web Search

Share

An+\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}
Swap sides so that all variable terms are on the left hand side.
An=\left(2+\sqrt{2}\right)^{n}-\sqrt{2}Bn
Subtract \sqrt{2}Bn from both sides.
An=\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn
Reorder the terms.
nA=\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn
The equation is in standard form.
\frac{nA}{n}=\frac{\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn}{n}
Divide both sides by n.
A=\frac{\left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn}{n}
Dividing by n undoes the multiplication by n.
A=\frac{\left(\sqrt{2}+2\right)^{n}}{n}-\sqrt{2}B
Divide \left(\sqrt{2}+2\right)^{n}-\sqrt{2}Bn by n.
An+\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}Bn=\left(2+\sqrt{2}\right)^{n}-An
Subtract An from both sides.
\sqrt{2}nB=\left(\sqrt{2}+2\right)^{n}-An
The equation is in standard form.
\frac{\sqrt{2}nB}{\sqrt{2}n}=\frac{\left(\sqrt{2}+2\right)^{n}-An}{\sqrt{2}n}
Divide both sides by \sqrt{2}n.
B=\frac{\left(\sqrt{2}+2\right)^{n}-An}{\sqrt{2}n}
Dividing by \sqrt{2}n undoes the multiplication by \sqrt{2}n.
B=\frac{\sqrt{2}\left(\sqrt{2}+2\right)^{n}}{2n}-\frac{\sqrt{2}A}{2}
Divide \left(2+\sqrt{2}\right)^{n}-An by \sqrt{2}n.