Evaluate
\frac{207}{136}\approx 1.522058824
Factor
\frac{3 ^ {2} \cdot 23}{2 ^ {3} \cdot 17} = 1\frac{71}{136} = 1.5220588235294117
Share
Copied to clipboard
\frac{\frac{16}{8}+\frac{7}{8}}{2-\frac{1}{9}}
Convert 2 to fraction \frac{16}{8}.
\frac{\frac{16+7}{8}}{2-\frac{1}{9}}
Since \frac{16}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{8}}{2-\frac{1}{9}}
Add 16 and 7 to get 23.
\frac{\frac{23}{8}}{\frac{18}{9}-\frac{1}{9}}
Convert 2 to fraction \frac{18}{9}.
\frac{\frac{23}{8}}{\frac{18-1}{9}}
Since \frac{18}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{23}{8}}{\frac{17}{9}}
Subtract 1 from 18 to get 17.
\frac{23}{8}\times \frac{9}{17}
Divide \frac{23}{8} by \frac{17}{9} by multiplying \frac{23}{8} by the reciprocal of \frac{17}{9}.
\frac{23\times 9}{8\times 17}
Multiply \frac{23}{8} times \frac{9}{17} by multiplying numerator times numerator and denominator times denominator.
\frac{207}{136}
Do the multiplications in the fraction \frac{23\times 9}{8\times 17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}